Skip to main content
Log in

Realization of Desired Plasmonic Structures via a Direct Laser Writing Technique

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We present a recent investigation of fabrication of desired plasmonic structures. First, the polymeric templates were realized by a simple and low-cost fabrication technique based on direct laser writing with a continuous-wave laser source. The plasmonic structures have been then realized by two methods, namely, a combination of gold evaporation and lift-off techniques, and a combination of gold sputtering and thermal annealing techniques. Each method presents its own advantages. Numerous metallic submicro- and nano-structures have been realized, which should be very interesting for different applications, such as high-transmission bandpass filters, plasmonic data storage, and plasmonic photonic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.A. Maier, Plasmonics: Fundamentals and Applications (Berlin: Springer Science & Business Media, 2007), pp. 5–201

    Google Scholar 

  2. M.E. Stewart, C.R. Anderton, L.B. Thompson, J. Maria, S.K. Gray, J.A. Rogers, and R.G. Nuzzo, Chem. Rev. 108, 494 (2008)

    Article  Google Scholar 

  3. N.J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, Chem. Rev. 111, 3913 (2011)

    Article  Google Scholar 

  4. C.S. Kumar, UV–VIS and Photoluminescence Spectroscopy for Nanomaterials Characterization (Berlin: Springer, 2013), pp. 1–590

    Book  Google Scholar 

  5. X. Huang, and M.A. El-Sayed, J. Adv. Res. 1, 13 (2010)

    Article  Google Scholar 

  6. Y. Chu, E. Schonbrun, T. Yang, and K.B. Crozier, Appl. Phys. Lett. 93, 181108 (2008)

    Article  Google Scholar 

  7. X. Wang, P. Gogol, E. Cambril, and B. Palpant, J. Phys. Chem. C 116, 24741 (2012)

    Article  Google Scholar 

  8. A.D. Humphrey, and W.L. Barnes, Phys. Rev. B 90, 075404 (2014)

    Article  Google Scholar 

  9. X. Zhang, S. Feng, J. Zhang, T. Zhai, H. Liu, and Z. Pang, Sensors 12, 12082 (2012)

    Article  Google Scholar 

  10. V.G. Kravets, F. Schedin, R. Jalil, L. Britnell, R.V. Gorbachev, D. Ansell, B. Thackray, K.S. Novoselov, A.K. Geim, A.V. Kabashin, and A.N. Grigorenko, Nat. Mater. 12, 304 (2013)

    Article  Google Scholar 

  11. A.G. Brolo, Nat. Photonics 6, 709 (2012)

    Article  Google Scholar 

  12. T. Xu, Y.K. Wu, X. Luo, and L.J. Guo, Nat. Commun. 1, 1 (2010)

    Google Scholar 

  13. Y. Lin, T. Zhai, Q. Ma, H. Liu,and X. Zhang, Opt. Express 21, 11315 (2013)

    Article  Google Scholar 

  14. W.L. Barnes, A. Dereux, and T.W. Ebbesen, Nature 424, 824 (2003)

    Article  Google Scholar 

  15. T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, and P.A. Wolff, Nature 391, 667 (1998)

    Article  Google Scholar 

  16. X. Zhang, G. Liu, Z. Liu, Z. Cai, Y. Hu, X. Liu, G. Fu, H. Gao, and S. Huang, IEEE Photonics J. 7, 1 (2015)

    Google Scholar 

  17. R.A. Pala, J. White, E. Barnard, J. Liu, and M.L. Brongersma, Adv. Mater. 21, 3504 (2009)

    Article  Google Scholar 

  18. J. Bhattacharya, N. Chakravarty, S. Pattnaik, W.D. Slafer, R. Biswas, and V.L. Dalal, Appl. Phys. Lett. 99, 131114 (2011)

    Article  Google Scholar 

  19. B. Zeng, Y. Gao, and F.J. Bartoli, Sci. Rep. 3, 2840 (2013)

    Article  Google Scholar 

  20. R. He, X. Zhou, Y. Fu, and Y. Zhang, Plasmonics 6, 171 (2011)

    Article  Google Scholar 

  21. G. Si, X. Jiang, J. Lv, Q. Gu, and F. Wang, Nanoscale Res. Lett. 9, 1 (2014)

    Article  Google Scholar 

  22. A.N. Grigorenko, A.K. Geim, H.F. Gleeson, Y. Zhang, A.A. Firsov, I.Y. Khrushchev, and J. Petrovic, Nature 438, 335 (2005)

    Article  Google Scholar 

  23. A. Steinbruck, J.W. Choi, S. Fasold, C. Menzel, A. Sergeyev, T. Pertsch, and R. Grange, RSC Adv. 4, 61898 (2014)

    Article  Google Scholar 

  24. F. Ma, M.H. Hong, and L.S. Tan, Appl. Phys. A 93, 907 (2008)

    Article  Google Scholar 

  25. F.Y. Lee, K.H. Fung, T.L. Tang, W.Y. Tam, and C. Chan, Curr. Appl. Phys. 9, 820 (2009)

    Article  Google Scholar 

  26. X. Xiong, S.-C. Jiang, Y.-H. Hu, R.-W. Peng, and M. Wang, Adv. Mater. 25, 3994 (2013)

    Article  Google Scholar 

  27. A. Braun, and S.A. Maier, ACS Sens. (2016). doi:10.1021/acssensors.6b00469.

    Google Scholar 

  28. M.T. Do, T.T.N. Nguyen, Q. Li, H. Benisty, I. Ledoux-Rak, and N.D. Lai, Opt. Express 21, 20964 (2013)

    Article  Google Scholar 

  29. M.T. Do, Q. Li, T.T.N. Nguyen, Q. Li, H. Benisty, I. Ledoux-Rak, and N.D. Lai, Microsyst. Technol. 20, 2097 (2014)

    Article  Google Scholar 

  30. Q.C. Tong, D.T.T. Nguyen, M.T. Do, M.H. Luong, B. Journet, I. Ledoux-Rak, and N.D. Lai, Appl. Phys. Lett. 108, 183104 (2016)

    Article  Google Scholar 

  31. Q.C. Tong, M.T. Do, B. Journet, I. Ledoux-Rak, and N.D. Lai, Proc. SPIE 9885 Photonic Crystal Mater. Devices XII, 988519 (2016)

  32. T. Karakouz, A.B. Tesler, T.A. Bendikov, A. Vaskevich, and I. Rubinstein, Adv. Mater. 20, 3893 (2008)

    Article  Google Scholar 

  33. G. Gupta, D. Tanaka, Y. Ito, D. Shibata, M. Shimojo, K. Furuya, K. Mitsui, and K. Kajikawa, Nanotechnology 20, 025703 (2009)

    Article  Google Scholar 

  34. H. Liu, X. Zhang, and Z. Gao, Photonic Nanostruct. 8, 131 (2010)

    Article  Google Scholar 

  35. J. Siegel, O. Lyutakov, V. Rybka, Z. Kolska, and V. Vork, Nanoscale Res. Lett. 6, 96 (2011)

    Article  Google Scholar 

  36. C. Yan, Y. Chen, A. Jin, M. Wang, X. Kong, X. Zhang, Y. Ju, and L. Han, Appl. Surf. Sci. 258, 377 (2011)

    Article  Google Scholar 

  37. M.T. Do, Q.C. Tong, M.H. Luong, A. Lidiak, I. Ledoux-Rak, and N.D. Lai, J. Electron. Mater. 45, 2347 (2016)

    Article  Google Scholar 

  38. A.B. Taylor, P. Michaux, A.S.M. Mohsin, and J.W.M. Chon, Opt. Express. 22, 13234 (2014)

    Article  Google Scholar 

  39. E.S.P. Leong, J. Deng, E.H. Khoo, S. Wu, W.K. Phua, and Y.J. Liu, RSC Adv. 5, 96366 (2015)

    Article  Google Scholar 

  40. M. Kuwahara, C. Mihalcea, N. Atoda, J. Tominaga, H. Fuji, and T. Kikukawa, Microelectron. Eng. 61–62, 415 (2002)

    Article  Google Scholar 

  41. Y. Usami, T. Watanabe, Y. Kanazawa, K. Taga, H. Kawai, and K. Ichikawa, Appl. Phys. Express 2, 126502 (2009)

    Article  Google Scholar 

  42. T. Maurer, P.-M. Adam, and G. Leveque, Nanophotonics 4, 363 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ngoc Diep Lai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, Q.C., Luong, M.H., Tran, T.M. et al. Realization of Desired Plasmonic Structures via a Direct Laser Writing Technique. J. Electron. Mater. 46, 3695–3701 (2017). https://doi.org/10.1007/s11664-016-5131-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5131-z

Keywords

Navigation