Advertisement

Journal of Electronic Materials

, Volume 46, Issue 6, pp 3695–3701 | Cite as

Realization of Desired Plasmonic Structures via a Direct Laser Writing Technique

  • Quang Cong Tong
  • Mai Hoang Luong
  • Thi Mo Tran
  • Jacqueline Remmel
  • Minh Thanh Do
  • Duy Manh Kieu
  • Rasta Ghasemi
  • Duc Tho Nguyen
  • Ngoc Diep LaiEmail author
Article

Abstract

We present a recent investigation of fabrication of desired plasmonic structures. First, the polymeric templates were realized by a simple and low-cost fabrication technique based on direct laser writing with a continuous-wave laser source. The plasmonic structures have been then realized by two methods, namely, a combination of gold evaporation and lift-off techniques, and a combination of gold sputtering and thermal annealing techniques. Each method presents its own advantages. Numerous metallic submicro- and nano-structures have been realized, which should be very interesting for different applications, such as high-transmission bandpass filters, plasmonic data storage, and plasmonic photonic devices.

Keywords

One-photon absorption direct laser writing plasmonics thermal annealing lift-off 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.A. Maier, Plasmonics: Fundamentals and Applications (Berlin: Springer Science & Business Media, 2007), pp. 5–201Google Scholar
  2. 2.
    M.E. Stewart, C.R. Anderton, L.B. Thompson, J. Maria, S.K. Gray, J.A. Rogers, and R.G. Nuzzo, Chem. Rev. 108, 494 (2008)CrossRefGoogle Scholar
  3. 3.
    N.J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, Chem. Rev. 111, 3913 (2011)CrossRefGoogle Scholar
  4. 4.
    C.S. Kumar, UV–VIS and Photoluminescence Spectroscopy for Nanomaterials Characterization (Berlin: Springer, 2013), pp. 1–590CrossRefGoogle Scholar
  5. 5.
    X. Huang, and M.A. El-Sayed, J. Adv. Res. 1, 13 (2010)CrossRefGoogle Scholar
  6. 6.
    Y. Chu, E. Schonbrun, T. Yang, and K.B. Crozier, Appl. Phys. Lett. 93, 181108 (2008)CrossRefGoogle Scholar
  7. 7.
    X. Wang, P. Gogol, E. Cambril, and B. Palpant, J. Phys. Chem. C 116, 24741 (2012)CrossRefGoogle Scholar
  8. 8.
    A.D. Humphrey, and W.L. Barnes, Phys. Rev. B 90, 075404 (2014)CrossRefGoogle Scholar
  9. 9.
    X. Zhang, S. Feng, J. Zhang, T. Zhai, H. Liu, and Z. Pang, Sensors 12, 12082 (2012)CrossRefGoogle Scholar
  10. 10.
    V.G. Kravets, F. Schedin, R. Jalil, L. Britnell, R.V. Gorbachev, D. Ansell, B. Thackray, K.S. Novoselov, A.K. Geim, A.V. Kabashin, and A.N. Grigorenko, Nat. Mater. 12, 304 (2013)CrossRefGoogle Scholar
  11. 11.
    A.G. Brolo, Nat. Photonics 6, 709 (2012)CrossRefGoogle Scholar
  12. 12.
    T. Xu, Y.K. Wu, X. Luo, and L.J. Guo, Nat. Commun. 1, 1 (2010)Google Scholar
  13. 13.
    Y. Lin, T. Zhai, Q. Ma, H. Liu,and X. Zhang, Opt. Express 21, 11315 (2013)CrossRefGoogle Scholar
  14. 14.
    W.L. Barnes, A. Dereux, and T.W. Ebbesen, Nature 424, 824 (2003)CrossRefGoogle Scholar
  15. 15.
    T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, and P.A. Wolff, Nature 391, 667 (1998)CrossRefGoogle Scholar
  16. 16.
    X. Zhang, G. Liu, Z. Liu, Z. Cai, Y. Hu, X. Liu, G. Fu, H. Gao, and S. Huang, IEEE Photonics J. 7, 1 (2015)Google Scholar
  17. 17.
    R.A. Pala, J. White, E. Barnard, J. Liu, and M.L. Brongersma, Adv. Mater. 21, 3504 (2009)CrossRefGoogle Scholar
  18. 18.
    J. Bhattacharya, N. Chakravarty, S. Pattnaik, W.D. Slafer, R. Biswas, and V.L. Dalal, Appl. Phys. Lett. 99, 131114 (2011)CrossRefGoogle Scholar
  19. 19.
    B. Zeng, Y. Gao, and F.J. Bartoli, Sci. Rep. 3, 2840 (2013)CrossRefGoogle Scholar
  20. 20.
    R. He, X. Zhou, Y. Fu, and Y. Zhang, Plasmonics 6, 171 (2011)CrossRefGoogle Scholar
  21. 21.
    G. Si, X. Jiang, J. Lv, Q. Gu, and F. Wang, Nanoscale Res. Lett. 9, 1 (2014)CrossRefGoogle Scholar
  22. 22.
    A.N. Grigorenko, A.K. Geim, H.F. Gleeson, Y. Zhang, A.A. Firsov, I.Y. Khrushchev, and J. Petrovic, Nature 438, 335 (2005)CrossRefGoogle Scholar
  23. 23.
    A. Steinbruck, J.W. Choi, S. Fasold, C. Menzel, A. Sergeyev, T. Pertsch, and R. Grange, RSC Adv. 4, 61898 (2014)CrossRefGoogle Scholar
  24. 24.
    F. Ma, M.H. Hong, and L.S. Tan, Appl. Phys. A 93, 907 (2008)CrossRefGoogle Scholar
  25. 25.
    F.Y. Lee, K.H. Fung, T.L. Tang, W.Y. Tam, and C. Chan, Curr. Appl. Phys. 9, 820 (2009)CrossRefGoogle Scholar
  26. 26.
    X. Xiong, S.-C. Jiang, Y.-H. Hu, R.-W. Peng, and M. Wang, Adv. Mater. 25, 3994 (2013)CrossRefGoogle Scholar
  27. 27.
    A. Braun, and S.A. Maier, ACS Sens. (2016). doi: 10.1021/acssensors.6b00469.Google Scholar
  28. 28.
    M.T. Do, T.T.N. Nguyen, Q. Li, H. Benisty, I. Ledoux-Rak, and N.D. Lai, Opt. Express 21, 20964 (2013)CrossRefGoogle Scholar
  29. 29.
    M.T. Do, Q. Li, T.T.N. Nguyen, Q. Li, H. Benisty, I. Ledoux-Rak, and N.D. Lai, Microsyst. Technol. 20, 2097 (2014)CrossRefGoogle Scholar
  30. 30.
    Q.C. Tong, D.T.T. Nguyen, M.T. Do, M.H. Luong, B. Journet, I. Ledoux-Rak, and N.D. Lai, Appl. Phys. Lett. 108, 183104 (2016)CrossRefGoogle Scholar
  31. 31.
    Q.C. Tong, M.T. Do, B. Journet, I. Ledoux-Rak, and N.D. Lai, Proc. SPIE 9885 Photonic Crystal Mater. Devices XII, 988519 (2016)Google Scholar
  32. 32.
    T. Karakouz, A.B. Tesler, T.A. Bendikov, A. Vaskevich, and I. Rubinstein, Adv. Mater. 20, 3893 (2008)CrossRefGoogle Scholar
  33. 33.
    G. Gupta, D. Tanaka, Y. Ito, D. Shibata, M. Shimojo, K. Furuya, K. Mitsui, and K. Kajikawa, Nanotechnology 20, 025703 (2009)CrossRefGoogle Scholar
  34. 34.
    H. Liu, X. Zhang, and Z. Gao, Photonic Nanostruct. 8, 131 (2010)CrossRefGoogle Scholar
  35. 35.
    J. Siegel, O. Lyutakov, V. Rybka, Z. Kolska, and V. Vork, Nanoscale Res. Lett. 6, 96 (2011)CrossRefGoogle Scholar
  36. 36.
    C. Yan, Y. Chen, A. Jin, M. Wang, X. Kong, X. Zhang, Y. Ju, and L. Han, Appl. Surf. Sci. 258, 377 (2011)CrossRefGoogle Scholar
  37. 37.
    M.T. Do, Q.C. Tong, M.H. Luong, A. Lidiak, I. Ledoux-Rak, and N.D. Lai, J. Electron. Mater. 45, 2347 (2016)CrossRefGoogle Scholar
  38. 38.
    A.B. Taylor, P. Michaux, A.S.M. Mohsin, and J.W.M. Chon, Opt. Express. 22, 13234 (2014)CrossRefGoogle Scholar
  39. 39.
    E.S.P. Leong, J. Deng, E.H. Khoo, S. Wu, W.K. Phua, and Y.J. Liu, RSC Adv. 5, 96366 (2015)CrossRefGoogle Scholar
  40. 40.
    M. Kuwahara, C. Mihalcea, N. Atoda, J. Tominaga, H. Fuji, and T. Kikukawa, Microelectron. Eng. 61–62, 415 (2002)CrossRefGoogle Scholar
  41. 41.
    Y. Usami, T. Watanabe, Y. Kanazawa, K. Taga, H. Kawai, and K. Ichikawa, Appl. Phys. Express 2, 126502 (2009)CrossRefGoogle Scholar
  42. 42.
    T. Maurer, P.-M. Adam, and G. Leveque, Nanophotonics 4, 363 (2015)CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  1. 1.Laboratoire de Photonique Quantique et Moléulaire, UMR 8537, Ecole Normale Supérieure de Cachan, CentraleSupélec, CNRSUniversité Paris-SaclayCachanFrance
  2. 2.Institute of Materials ScienceVietnam Academy of Science and TechnologyCau GiayVietnam
  3. 3.Hanoi National University of EducationCau GiayVietnam
  4. 4.Vietnam Air Defence and Air Force Academy, Kim SonSon TayVietnam
  5. 5.Institut D’Alembert, Ecole Normale Supérieure de CachanUniversité Paris-SaclayCachanFrance
  6. 6.Department of Physics and AstronomyUniversity of GeorgiaAthensUSA

Personalised recommendations