Skip to main content
Log in

Metal-atom Interactions and Clustering in Organic Semiconductor Systems

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The interatomic interactions and clustering of metal atoms have been studied by first-principles calculations in graphene, pentacene, and polyacetylene as representative organic systems. It is shown that long-range repulsive Coulomb interaction appears between metal atoms with small electronegativity such as Al due to their ionization on host organic molecules, inducing their scattered distribution in organic systems. On the other hand, metal atoms with large electronegativity such as Au are weakly bonded to organic molecules, easily diffuse in molecular solids, and prefer to combine with each other owing to their short-range strong metallic-bonding interaction, promoting metal cluster generation in organic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Tomita and T. Nakayama, Electronic Processes in Organic Electronics: Bridging Nanostructure, Electronic States and Device Properties, ed. H. Ishii, K. Kudo, T. Nakayama, and N. Ueno (Tokyo: Springer, 2015), p. 303.

    Google Scholar 

  2. Y. Hirose, A. Kahn, V. Aristov, and P. Soukiassian, Appl. Phys. Lett. 68, 217 (1996).

    Article  Google Scholar 

  3. Y. Hirose, A. Kahn, V. Aristov, P. Soukiassian, V. Bulovic, and S.R. Forrest, Phys. Rev. B 54, 13748 (1996).

    Article  Google Scholar 

  4. W.R. Salaneck, K. Seki, A. Kahn, and J.-J. Pireaux, eds., Conjugated Polymer and Molecular Interfaces (New York: Marcel Dekker, 2002).

    Google Scholar 

  5. J.H. Cho, D.H. Kim, Y. Jang, W.H. Lee, K. Ihm, J.H. Han, S. Chung, and K. Cho, Appl. Phys. Lett. 89, 132101 (2006).

    Article  Google Scholar 

  6. K. Suemori, M. Yokoyama, and M. Hiramoto, J. Appl. Phys. 99, 036109 (2006).

    Article  Google Scholar 

  7. T. Sawabe, K. Okumura, T. Sueyoshi, T. Miyamoto, K. Kudo, N. Ueno, and M. Nakamura, Appl. Phys. A 95, 225 (2009).

    Article  Google Scholar 

  8. H. Yoshida and N. Sato, Appl. Phys. Lett. 91, 141915 (2007).

    Article  Google Scholar 

  9. T. Kondo, K. Izumi, K. Watahiki, Y. Iwasaki, T. Suzuki, and J. Nakamura, J. Phys. Chem. C 112, 15607 (2008).

    Article  Google Scholar 

  10. T. Kondo, T. Suzuki, and J. Nakamura, J. Phys. Chem. Lett. 2, 577 (2011).

    Article  Google Scholar 

  11. T. Park, Y. Tomita, and T. Nakayama, Surf. Sci. 621, 7 (2014).

    Article  Google Scholar 

  12. H.O. Pierson, Handbook of Carbon, Graphite, Diamonds and Fullerenes: Processing, Properties and Applications (Mill Road: Noyes, 1993).

    Google Scholar 

  13. A. Grüneis, C. Attaccalite, A. Rubio, D. Vyalikh, S.L. Molodtsov, J. Fink, R. Follath, W. Eberhardt, B. Büchner, and T. Pichler, Phys. Rev. B 80, 075431 (2009).

    Article  Google Scholar 

  14. Y. Tomita and T. Nakayama, Org. Electron. 13, 1487 (2012).

    Article  Google Scholar 

  15. Y. Tomita and T. Nakayama, Appl. Phys. Express 3, 091601 (2010).

    Article  Google Scholar 

  16. TAPP Consortium (University of Tokyo), Tokyo Ab initio Program Package (TAPP & xTAPP) (xTAPP official web site, 1983–2016), http://xtapp.cp.is.s.u-tokyo.ac.jp/.

  17. J. Yamauchi, M. Tsukada, S. Watanabe, and O. Sugino, Phys. Rev. B 54, 5586 (1996).

    Article  Google Scholar 

  18. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).

    Article  Google Scholar 

  19. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  20. Y. Ono, K. Kusakabe, and T. Nakayama, J. Phys. Soc. Jpn. 79, 074701 (2010).

    Article  Google Scholar 

  21. Y. Tomita, PhD. Thesis, Chiba University (2011).

  22. M.S. Lee, D.U. Lee, J.-H. Kim, E.K. Kim, W.M. Kim, and W.-J. Cho, Jpn. J. Appl. Phys. 46, 6202 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Grants-in-Aid for Scientific Research (Grant No. 26400310) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan. We also acknowledge the supercomputing centers of the Institute of Solid State Physics of the University of Tokyo, Institute for Molecular Science, Kyushu University, and Chiba University for use of their facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoko Tomita.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomita, Y., Park, Tu. & Nakayama, T. Metal-atom Interactions and Clustering in Organic Semiconductor Systems. J. Electron. Mater. 46, 3927–3932 (2017). https://doi.org/10.1007/s11664-016-5090-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5090-4

Keywords

Navigation