Journal of Electronic Materials

, Volume 46, Issue 2, pp 1307–1318 | Cite as

Electrically Conductive Photopatternable Silver Paste for High-Frequency Ring Resonator and Band-Pass Filter

  • Govind Umarji
  • Nilam Qureshi
  • Suresh Gosavi
  • Uttam Mulik
  • Atul Kulkarni
  • Taesung Kim
  • Dinesh AmalnerkarEmail author


In conventional thick-film technology, there are often problems associated with poor edges, rough surfaces, and reproducibility due to process limitations, especially for high-frequency applications. These difficulties can be circumvented by using thin-film technology, but process cost and complexity remain major concerns. In this context, photopatternable thick-film technology can offer a viable alternative due to its Newtonian rheology, which can facilitate formation of the required sharp edges. We present herein a unique attempt to formulate a photopatternable silver paste with organic (photosensitive polymer) to inorganic (silver and glass) ratio of 30:70, developed in-house by us for fabrication of thick-film-based ring resonator and band-pass filter components. The ring resonator and band-pass component structures were realized by exposing screen-printed film to ultraviolet light at wavelength of 315 nm to 400 nm for 30 s to crosslink the photosensitive polymer. The pattern was subsequently developed using 1% sodium carbonate aqueous solution. For comparison, conventional silver and silver-palladium thick films were produced using in-house formulations. The surface topology and microstructural features were examined by stereomicroscopy and scanning electron microscopy. The smoothness and edge definition of the film were assessed by profilometry. The resistivity of the samples was observed and remained in the range from 3.4 μΩ cm to 3.6 μΩ cm. The electrical properties were compared by measuring the insertion loss characteristics. The results revealed that the ring resonator fabricated using the photopatternable silver paste exhibited better high-frequency properties compared with components based on conventional silver or silver-palladium paste, especially in terms of the resonant frequency of 10.1 GHz (versus 10 GHz designed) with bandwidth of 80 MHz. Additionally, the band-pass filter fabricated using the photopatternable silver paste displayed better center frequency (f 0 = 10.588 GHz) and comparable ripple and attenuation bandwidth performance on par with Cu thin film.


Thick films photopatterning ultraviolet (UV) exposure aqueous developable ring resonator band-pass filter 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H.J. Song, K. Ajito, Y. Muramoto, A. Wakatsuki, T. Nagatsuma, and N. Kukutsu, Electron. Lett. 48, 1 (2012).CrossRefGoogle Scholar
  2. 2.
    S. Chen and J. Zhao, IEEE Commun. Mag. 1, 36 (2014).CrossRefGoogle Scholar
  3. 3.
    T.T.Sunoda, Y.R. Kasai, N.S. Ota, K. Sawada, Y. Yamamoto, Y. Fukuoka, and S. Sagara, International Conference on Electronics Packaging (ICEP) (2014), pp. 50–54. doi: 10.1109/ICEP.2014.6826659.
  4. 4.
    R.S. Theodore, S. Shu, M. Rimma, Z. Hang, A. Yaniv, W. Kevin, W.N. George, S.K. Jocelyn, S. Mathew, and G. Felix, IEEE Access. 1, 335 (2013).CrossRefGoogle Scholar
  5. 5.
    D. Ortolino, A. Engelbrecht, H. Lauterbach, M. Bräu, J. Kita, and R. Moos, J. Ceram. Sci. Technol. 5, 317 (2014).Google Scholar
  6. 6.
    S. Achmatowicz, K. Kiełbasiński, E. Zwierkowska, I. Wyżkiewicz, V. Baltrušaitis, and M. Jakubowska, Microelectron. Reliab. 49, 579 (2009).CrossRefGoogle Scholar
  7. 7.
    M. Jakubowska, S. Achmatowicz, V. Baltrušaitis, A. Młożniak, I. Wyżkiewicz, and E. Zwierkowska, Microelectron. Reliab. 48, 860 (2008).CrossRefGoogle Scholar
  8. 8.
    J.P. Cazenaveand and O. Puig, Electronic Component Conference—EECC’97, Proceedings of the 3rd ESA Electronic Component Conference (Noordwijk, 1997), vol. 1, p. 58.Google Scholar
  9. 9.
    K.J. Williams, A. Curley, M. Tunnicliffe, P. Barrett, P.J. Scott, and J. Ferguson, EUROCON’2001, International Conference on Trends in Communications, Fei Stu Tratislava (Slovakia, 2001), vol. 1, p. 178.Google Scholar
  10. 10.
    S. Muckett and I. Minalgiene, IMAPS International Symposium on Microelectronics and Packaging (Boston, USA, 2000), vol. 20.Google Scholar
  11. 11.
    V. Manier, O. Sockeel, J. Gauthier, and T. Suess, Microwave Conference (Rennes, 1994), vol. 2.Google Scholar
  12. 12.
    B. Dziurdzia and S. Nowak, 12th International Conference on Microwaves and Radar, MIKON ‘98 (1998), vol. 445.Google Scholar
  13. 13.
    S. Muckett and J. Minalgene, IEMT/IMC Proceedings (1998), vol. 154.Google Scholar
  14. 14.
    M.S. Aftanasar, P.R. Young, I.D. Robertson, J. Minalgiene, and S. Lucyszyn, Electron. Lett. 37, 1122 (2007).CrossRefGoogle Scholar
  15. 15.
    D. Stephens, P.R. Young, and I.D. Robertson, IEEE Trans. Microw. Theory Tech. 53, 3832 (2005).CrossRefGoogle Scholar
  16. 16.
    T. Lim, H. Ang, I.D. Robertsonand, and B.L. Weiss, Microw. Opt. Technol. Lett. 48, 2032 (2006).CrossRefGoogle Scholar
  17. 17.
    C. Person, E. Rius, and J.P. Coupez, Ann. Telecommun. 56, 39 (2001).Google Scholar
  18. 18.
    M.S. Aftanasar, P.R. Young, and I.D. Robertson, IEEE Dig. 1, 10 (2002).Google Scholar
  19. 19.
    L. Chai, A. Shaikh, and V. Stygar, Wireless Symposium (San Jose, 2001).Google Scholar
  20. 20.
    M. Chongcheawchamnan, C.Y. Ng, M. Aftanasar, I.D. Robertson, and J. Minalgiene, Electron. Lett. 37, 1228 (2001).CrossRefGoogle Scholar
  21. 21.
    B. Dziurdzia, Z. Magonski, S. Nowak, M. Ciez, W. Gregorczyk, and W. Niemyjski, Electron. Technol. Internet J. 36, 1 (2004).
  22. 22.
    D. Stephens, P.R Young, and I.D. Robertson, 2005 IEEE MTT-S International Microwave Symposium Digest (2005).Google Scholar
  23. 23.
    K.K. Samanta, D. Stephens, and I.D. Robertson, 2005 IEEE MTT-S International Microwave Symposium Digest (2005).Google Scholar
  24. 24.
    M. Henry, C.E. Free, B.S. Izquerido, J. Batchelor, and P. Young, Proceedings 39th International Symposium on Microelectronics, IMAPS (San Diego, CA, 2006), vol. 230.Google Scholar
  25. 25.
    M. Henry, C.E. Free, B.S. Izqueirdo, J. Batchelor, and P. Young, IEEE Trans. Adv. Packag. 32, 93 (2009).CrossRefGoogle Scholar
  26. 26.
    M. Vrana, A. Van Calster, D. Vanicky, W. Delbare, R. VandenBerghe, S. Demolder, and K. Allaert, Microelectron. Int. 12, 16 (1995).CrossRefGoogle Scholar
  27. 27.
    A. Dziedzic, Bull. Pol. Acad. Sci. Tech. Sci. 54, 9 (2006).Google Scholar
  28. 28.
    K.K. Samanta, D. Stephens, and I.D. Robertson, Electron. Lett. 42, 701 (2006).CrossRefGoogle Scholar
  29. 29.
    C.Y. Ng, M. Chongcheawchamnan, M.S. Aftanasar, I.D. Robertson, and J. Minalgiene, IEEE MTT-S Digest (2002), vol. 2209.Google Scholar
  30. 30.
    C.Y. Ng, M. Chongcheawchamnan, M.S. Aftanasar, I.D. Robertson, and J. Minalgiene, IEEE Electron. Lett. 37, 1167 (2001).CrossRefGoogle Scholar
  31. 31.
    B. Dziurdzia, S. Nowak, M. Ciez, W. Gregorczyk, H. Thust, and E. Polzer, Microelectron. Int. 16, 46 (1999).CrossRefGoogle Scholar
  32. 32.
    G.G. Umarji, S.A. Ketkar, G.J. Phatak, T. Seth, U.P. Mulik, and D.P. Amalnerkar, Mater. Lett. 59, 503 (2005).CrossRefGoogle Scholar
  33. 33.
    E.O. Hammerstadt, European Microwave Conference Proceedings (Hamburg, Germany, 1975), vol. 268.Google Scholar
  34. 34.
    B.R. Sharma and S.C. Mehrotra, J. Microw. Optoelectron. 2, 17 (2002).Google Scholar
  35. 35.
    S. Akhtarzad, T.R. Rowbotham, and P.B. Jones, IEEE Trans. MTT 23, 486 (1975).CrossRefGoogle Scholar
  36. 36.
    T. Edwards, Foundations for Microstrip Circuit Design, 2nd ed. (London: Wiley, 1991), pp. 1–426.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  • Govind Umarji
    • 1
  • Nilam Qureshi
    • 1
  • Suresh Gosavi
    • 2
  • Uttam Mulik
    • 1
  • Atul Kulkarni
    • 3
  • Taesung Kim
    • 3
  • Dinesh Amalnerkar
    • 3
    Email author
  1. 1.Centre for Materials for Electronics Technology (C-MET)PuneIndia
  2. 2.Department of PhysicsSavitribai Phule Pune University (SPPU)PuneIndia
  3. 3.School of Mechanical EngineeringSungkyunkwan UniversitySuwonSouth Korea

Personalised recommendations