Journal of Electronic Materials

, Volume 46, Issue 2, pp 1055–1060 | Cite as

Thermal Fatigue Behavior of Silicon-Carbide-Doped Silver Microflake Sinter Joints for Die Attachment in Silicon/Silicon Carbide Power Devices

  • Hao Zhang
  • Chuantong Chen
  • Shijo Nagao
  • Katsuaki Suganuma
Article

Abstract

We studied the thermal fatigue behavior of submicron silicon carbide particle (SiCp)-doped silver (Ag) microflake sinter joints for die attachment in next-generation power devices. Si dummy chips and direct bonded copper substrates with various metallization schemes were bonded using SiCp-doped Ag microflakes under mild conditions (250°C, 30 min, 0.4 MPa). The SiCp was distributed homogeneously in the porous Ag network and inhibited morphological evolution during thermal cycling tests. The shear strength of as-sintered pure Ag and SiCp-added joints was ∼50 MPa and 35 MPa, respectively. Thermal cycling tests from −40°C to 250°C were conducted for up to 1000 cycles (hours) to characterize the thermostability of the bonded joints. After 1000 cycles, joints with and without SiCp experienced bonding degradation, with shear strength of ∼25 MPa and 20 MPa, respectively. Thus, after 1000 cycles, the shear strength of pure Ag and SiCp-doped joints decreased by 58% and 42%, respectively, compared with their maximum value. Coarsening of porous Ag occurred in pure Ag joints. SiCp addition inhibited morphological evolution of SiCp-doped joints during thermal cycling. However, vertical cracks generated by thermal stress were observed in joints both with and without SiCp, which may limit long-term reliability.

Keywords

Silver flake sinter joining die attachment thermal cycling wide-bandgap semiconductor silicon carbide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11664_2016_5069_MOESM1_ESM.jpg (4.2 mb)
Fig. S1EDS elemental mapping of SiCp-doped joints on (a) Ag100, (b) Ti500, and (c) Ni5000 substrates after 500 cycles (JPEG 4307 kb)
11664_2016_5069_MOESM2_ESM.jpg (3.7 mb)
Fig. S2Optical microscopy and scanning electron microscopy images of fracture surfaces of (a) pure Ag joints on Ag100 substrate before cycling, (c) pure Ag joints on Ag100 substrate after 1000 cycles, (e) SiCp-doped joints on Ag100 substrate before cycling, and (g) SiCp-doped joints on Ag100 substrate after 1000 cycles. (b, d, f, h–k) Magnified views of areas indicated by white rectangles (JPEG 3779 kb)

References

  1. 1.
    J. Millan, P. Godignon, X. Perpina, A. Perez-Tomas, and J. Rebollo, IEEE Trans. Power Electron. 29, 2155 (2014).CrossRefGoogle Scholar
  2. 2.
    T. Kunimune, M. Kuramoto, S. Ogawa, T. Sugahara, S. Nagao, and K. Suganuma, Acta Mater. 89, 133 (2015).CrossRefGoogle Scholar
  3. 3.
    H. Chin, K. Cheong, and A. Ismail, Metall. Mater. Trans. B 41, 824 (2010).CrossRefGoogle Scholar
  4. 4.
    Y. Gao, A. Huang, S. Krishnaswami, J. Richmond, and A. Agarwal, IEEE Trans. Ind. Appl. 44, 887 (2008).CrossRefGoogle Scholar
  5. 5.
    J. Biela, M. Schweizer, S. Waffler, and J. Kolar, IEEE Trans. Ind. Electron. 58, 2872 (2011).CrossRefGoogle Scholar
  6. 6.
    R. Johnson, C. Wang, Y. Liu, and J. Scofield, IEEE Trans. Electron. Packag. Manuf. 30, 182 (2007).CrossRefGoogle Scholar
  7. 7.
    P. Ning, T. Lei, F. Wang, G.Q. Lu, K. Ngo, and K. Rajashekara, IEEE Trans. Power Electron. 25, 2059 (2010).CrossRefGoogle Scholar
  8. 8.
    A.A. Bajwa, Y. Qin, R. Reiner, R. Quay, and J. Wilde, IEEE Trans. Compon. Packag. Manuf. Technol. 5, 1402 (2015).CrossRefGoogle Scholar
  9. 9.
    J. Sopousek, J. Bursik, J. Zalesak, and Z. Pesina, J. Min. Metall. B 48, 63 (2012).CrossRefGoogle Scholar
  10. 10.
    H. Yu, L. Li, and Y. Zhang, Scr. Mater. 66, 931 (2012).CrossRefGoogle Scholar
  11. 11.
    H. Alarifi, A. Hu, M. Yavuz, and Y. Zhou, J. Electron. Mater. 40, 1394 (2011).CrossRefGoogle Scholar
  12. 12.
    P. Peng, A. Hu, A. Gerlich, G. Zou, L. Liu, Y. Zhou, and A.C.S. Appl, Mater. Interface 7, 12597 (2015).CrossRefGoogle Scholar
  13. 13.
    J. Yoo, D. Han, S.B. Park, J. Chae, J. Kim, and J. Kwak, Nanotechnology 25, 465706 (2014).CrossRefGoogle Scholar
  14. 14.
    Q. Huang, W. Shen, Q. Xu, R. Tan, and W. Song, Mater. Chem. Phys. 147, 550 (2014).CrossRefGoogle Scholar
  15. 15.
    J. Jiu, H. Zhang, S. Koga, S. Nagao, Y. Izumi, and K. Suganuma, J. Mater. Sci.: Mater. Electron. 26, 7183 (2015).Google Scholar
  16. 16.
    R. Khazaka, L. Mendizabal, and D. Henry, J. Electron. Mater. 43, 2459 (2014).CrossRefGoogle Scholar
  17. 17.
    K. Siow, J. Electron. Mater. 43, 947 (2014).CrossRefGoogle Scholar
  18. 18.
    S. Sakamoto, T. Sugahara, and K. Suganuma, J. Mater. Sci.: Mater. Electron. 24, 1332 (2012).Google Scholar
  19. 19.
    S. Sakamoto, S. Nagao, and K. Suganuma, J. Mater. Sci.: Mater. Electron. 24, 2593 (2013).Google Scholar
  20. 20.
    H. Zhang, S. Nagao, and K. Suganuma, J. Electron. Mater. 44, 3896 (2015).CrossRefGoogle Scholar
  21. 21.
    H. Zhang, S. Nagao, K. Suganuma, H.-J. Albrecht, and K. Wilke, J. Mater. Sci.: Mater. Electron. 27, 1337 (2015).Google Scholar
  22. 22.
    J.F. Rohan, G. O’Riordan, and J. Boardman, Appl. Surf. Sci. 185, 289 (2002).CrossRefGoogle Scholar
  23. 23.
    B. Lee, H. Jeon, K.-W. Kwon, and H.-J. Lee, Acta Mater. 61, 6736 (2013).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  • Hao Zhang
    • 1
  • Chuantong Chen
    • 1
  • Shijo Nagao
    • 1
  • Katsuaki Suganuma
    • 1
  1. 1.The Institute of Scientific and Industrial ResearchOsaka UniversityOsakaJapan

Personalised recommendations