Journal of Electronic Materials

, Volume 46, Issue 2, pp 1010–1021 | Cite as

Substrate Effects on Growth of MoS2 Film by Laser Physical Vapor Deposition on Sapphire, Si and Graphene (on Cu)

Article
  • 134 Downloads

Abstract

Molybdenum disulfide (MoS2) films were deposited on sapphire (0001), Si (001) and graphene on Cu by laser physical vapor deposition at 600°C for different time periods to achieve control of thickness. MoS2 film was found to grow on all the substrates in the (0002) orientation. Films are found to be S-deficient and a free Mo peak was observed in the x-ray diffraction. Raman spectroscopy showed the characteristic peaks of MoS2 film with decreasing separation between the A1g and E2g1 peaks for a shorter time of deposition or smaller thickness of the film. MoS2 films on sapphire substrate showed additional peaks due to MoO3 and Mo4O11 phases. Films on Si substrate and graphene on Cu contained only the characteristic peaks. MoS2 films on graphene suppressed the graphene peak as a result of large fluorescence background in the Raman spectrum. Interfacial effects and the presence of an oxygen impurity are considered responsible for the large fluorescence background in the Raman spectrum. X-ray photoelectron spectroscopy indicated substrate interaction with the films on sapphire and Si. Coverage of the film on the substrates is uniform with uniform distribution of the Mo and S as evidenced from the x-ray maps. Atomic force microscopy image revealed the surface of the film on sapphire to be very smooth. Electrical conductance measurements showed the MoS2 film on sapphire is semiconducting but with much lower activation energy compared to the bandgap. The presence of excess Mo in the film is considered responsible for the lower activation energy.

Keywords

Molybdenum disulfide graphene laser deposition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Wang, L. Yu, Y.-H. Lee, Y. Shi, A. Hsu, M.L. Chin, L.-J. Li, M. Dubey, J. Kong, and T. Palacios, Nano Lett. 12, 4674 (2012).CrossRefGoogle Scholar
  2. 2.
    M.-L. Tsai, S.-H. Su, J.-K. Chang, D.-S. Tsai, C.-H. Chen, C.-I. Wu, L.-J. Li, L.-J. Chen, and J.-H. He, ACS Nano 8, 8317 (2014).CrossRefGoogle Scholar
  3. 3.
    A. Lipatov, P. Sharma, A. Gruverman, and A. Sinitski, ACS Nano 9, 8089 (2015).CrossRefGoogle Scholar
  4. 4.
    J. Xu and X. Cao, Chem. Eng. J. 260, 642 (2015).CrossRefGoogle Scholar
  5. 5.
    F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A.C. Ferrari, R.S. Ruoff, and V. Pellegrini, Science 347, 1246501 (2015).CrossRefGoogle Scholar
  6. 6.
    T. Stephenson, Z. Li, B. Olsen, and D. Mitlin, Energy Environ. Sci. 7, 209 (2014).CrossRefGoogle Scholar
  7. 7.
    I.L. Singer, R.N. Bolster, J. Wegand, S. Fayeulle, and B.C. Stupp, Appl. Phys. Lett. 57, 995 (1990).CrossRefGoogle Scholar
  8. 8.
    K.F. Mak, C. Lee, J. Hone, J. Shan, and T.F. Heinz, Phys. Rev. Lett. 105, 136805 (2010).CrossRefGoogle Scholar
  9. 9.
    K.K. Kam and B.A. Parkinson, J. Phys. Chem. 86, 463 (1982).CrossRefGoogle Scholar
  10. 10.
    B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011).CrossRefGoogle Scholar
  11. 11.
    K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, M.A. Morozov, and A.K. Gein, Proc. Natl. Acad. Sci. USA 102, 10451 (2005).CrossRefGoogle Scholar
  12. 12.
    O.L. Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, Nat. Nanotechnol. 8, 497 (2013).CrossRefGoogle Scholar
  13. 13.
    W. Zhu, T. Low, Y.-H. Lee, H. Wang, D.B. Farmer, J. Kong, F. Xia, and P. Avouris, Nat. Commun. 5, 3087 (2014).Google Scholar
  14. 14.
    Y.-H. Lee, X.-Q. Zhang, W. Zhang, M.-T. Chang, C.-T. Lin, K.-D. Chang, Y.-C. Yu, J.T.-W. Wang, C.-S. Chang, L.-J. Li, and T.-W. Lin, Adv. Mater. 24, 2320 (2012).CrossRefGoogle Scholar
  15. 15.
    Y.-T. Ho, C.-H. Ma, T.-T. Luong, L.-L. Wei, T.-C. Yen, W.-T. Hsu, W.-H. Chang, Y.-C. Chu, Y.-Y. Tu, K.P. Pande, and E.Y. Chang, Phys. Stat. Solidi RRL 9, 187 (2015).CrossRefGoogle Scholar
  16. 16.
    R. Moriya, T. Yamaguchi, S. Morikawa, Y. Sata, S. Masubuchi, and T. Machida, Appl. Phys. Lett. 105, 083119 (2014).CrossRefGoogle Scholar
  17. 17.
    M.-Y. Lin, C.-E. Chang, C.-H. Wang, C.-F. Su, C. Chen, S.-C. Lee, and S.-Y. Lin, Appl. Phys. Lett. 103, 251607 (2013).CrossRefGoogle Scholar
  18. 18.
    R. Moriya, T. Yamaguchi, I. Inoue, S. Morikawa, Y. Sata, S. Masubuchi, and T. Machida, Appl. Phys. Lett. 106, 223103 (2015).CrossRefGoogle Scholar
  19. 19.
    B. Sachs, L. Britnell, T.O. Wehling, A. Eckmann, R. Jalil, B.D. Belle, A.I. Lichtenstien, M.I. Katsnelson, and K.S. Novoselov, Appl. Phys. Lett. 103, 251607 (2013).CrossRefGoogle Scholar
  20. 20.
    J. Hong, Z. Hu, M. Probert, K. Li, D. Lv, X. Yang, L. Gu, N. Mao, Q. Feng, L. Xie, J. Zhang, D. Wu, Z. Zhang, C. Jin, W. Ji, X. Zhang, J. Yuan, and Z. Zhang, Nat. Commun. 6, 6293 (2015).CrossRefGoogle Scholar
  21. 21.
    H. Qiu, T. Xu, Z. Wang, W. Ren, H. Nan, Z. Ni, Q. Chen, S. Yuan, F. Miao, F. Song, G. Long, Y. Shi, L. Sun, J. Wang, and X. Wang, Nat. Commun. 4, 2642 (2013).Google Scholar
  22. 22.
    M. van der Zande, P.Y. Huang, D.A. Chenet, T.C. Berkelbach, Y.M. You, G.-H. Lee, T.F. Heinz, D.R. Reichman, D.A. Muller, and J.C. Hone, Nat. Mater. 12, 554 (2013).CrossRefGoogle Scholar
  23. 23.
    J.J. Hu, J.S. Zabinski, J.E. Bultman, J.H. Sanders, and A.A. Voevodin, Tribol. Lett. 24, 127 (2006).CrossRefGoogle Scholar
  24. 24.
    T.A.J. Loh and D.H.C. Chua, ACS Appl. Mater. Interfaces 6, 15966 (2014).CrossRefGoogle Scholar
  25. 25.
    C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, and S. Ryu, ACS Nano 4, 2695 (2010).CrossRefGoogle Scholar
  26. 26.
    M. Dieterle, G. Weinberg, and G. Mestl, Phys. Chem. Chem. Phys. 4, 812 (2002).CrossRefGoogle Scholar
  27. 27.
    M. Dieterle and G. Mestl, Phys. Chem. Chem. Phys. 4, 822 (2002).CrossRefGoogle Scholar
  28. 28.
    R. Hawaldar, P. Merino, M.R. Correia, I. Bdikin, J. Grácio, J. Méndez, J.A. Martın-Gago, and M.K. Singh, Sci. Rep. 2, 682 (2012).CrossRefGoogle Scholar
  29. 29.
    Y. Hao, M.S. Bharathi, L. Wang, Y. Liu, H. Chen, S. Nie, X. Wang, H. Chou, C. Tan, B. Fallahazad, H. Ramanarayan, C.W. Magnuson, E. Tutuc, B.I. Yakobson, K.F. McCarty, Y.-W. Zhang, P. Kim, J. Hone, L. Colombo, and R.S. Ruoff, Science 342, 720 (2013).CrossRefGoogle Scholar
  30. 30.
    R.M. Jacobberger and M.S. Arnold, Chem. Mater. 25, 871 (2013).CrossRefGoogle Scholar
  31. 31.
    C. Ferrari and J. Robertson, Phys. Rev. B 64, 075414 (2001).CrossRefGoogle Scholar
  32. 32.
    K. Jagannadham, M.L. Reed, M.J. Lance, T.R. Watkins, K. Verghese, J.E. Butler, and A. Smirnov, Diam. Relat. Mater. 16, 50 (2007).CrossRefGoogle Scholar
  33. 33.
    H. Hagemam, H. Bill, W. Sadowski, E. Walker, and M. Franioisc, Solid State Commun. 73, 447 (1990).CrossRefGoogle Scholar
  34. 34.
    M. Balkanski, M.A. Nusimovici, and J. Reydellet, Solid State Commun. 7, 815 (1969).CrossRefGoogle Scholar
  35. 35.
    A.V. Naumkin, A. Kraut-Vass, S.W. Gaarenstroom, and C.J. Powel, NIST X-ray Photoelectron Spectroscopy Database, NIST Standard Reference Database 20, Version 4.1, 2012, https://srdata.nist.gov/XPS/.
  36. 36.
    S. Ross and A. Sussman, J. Phys. Chem. 59, 889 (1955).CrossRefGoogle Scholar
  37. 37.
    D.R. Wheeler and W.A. Brainard, Report No. NASA-TN-D-8482, E-9059, NASA Lewis Research Center, Cleveland, OH, 01 August, 1977.Google Scholar
  38. 38.
    J.H. Seo, Y.S. Lee, M.S. Jeon, J.K. Song, D.B. Han, and S.K. Rha, J. Ceram. Process. Res. 10, 335 (2009).Google Scholar
  39. 39.
    C. Wan, Y.N. Regmi, and B.M. Leonard, Angew. Chem. 126, 6525 (2014).CrossRefGoogle Scholar
  40. 40.
    K. Oshikawa, M. Nagai, and S. Omi, J. Phys. Chem. 105, 9124 (2001).CrossRefGoogle Scholar
  41. 41.
    J. Suh, T.-E. Park, D.-Y. Lin, J. Park, H.J. Jung, Y. Chen, C. Ko, C. Jang, Y. Sun, R. Sinclair, J. Chang, S. Tongay, and J. Wu, Nano Lett. 14, 6976 (2014).CrossRefGoogle Scholar
  42. 42.
    L. D’Arsie, S. Esconjauregui, R. Weatherup, Y. Guo, S. Bhardwaj, A. Centeno, A. Zurutuza, C. Cepek, and J. Robertson, Appl. Phys. Lett. 105, 10310 (2014).Google Scholar
  43. 43.
    Z. Chen, I. Santoso, R. Wang, L.F. Xie, H.Y. Mao, H. Huang, Y.Z. Wang, X.Y. Gao, Z.K. Chen, D. Ma, A.T.S. Wee, and W. Chen, Appl. Phys. Lett. 96, 213104 (2010).CrossRefGoogle Scholar
  44. 44.
    M.I. Serna, S.H. Yoo, S. Moreno, Y. Xi, J.P. Oviedo, H. Choi, H.N. Alshareef, M.J. Kim, M.M. Jolandon, and M.A.Q. Lopez, ACS Nano 10, 6054 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringNorth Carolina State UniversityRaleighUSA
  2. 2.Department of Mechanical and Aerospace EngineeringNorth Carolina State UniversityRaleighUSA

Personalised recommendations