Skip to main content
Log in

MgO/Cu2O Superlattices: Growth of Epitaxial Two-Dimensional Nanostructures

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Alternated stacking of dissimilar layers can produce novel superlattice materials with multiple functionalities. The majority of such work reported in literature on epitaxial superlattices has been on alternating layers with the same space group (SG) and crystal structure (CS), whereas superlattices with the same CS but different SG have not been studied as much. We have grown superlattices with two well-known oxide materials, viz. cuprite (Cu2O, CS = cubic and SG = Pn \( \bar{3} \) m) and magnesium oxide (MgO, CS = cubic, SG = Fm \( \bar{3} \) m). An MgO buffer layer grown near 650°C at the film–substrate interface was found to be essential to achieving reasonable long-range atomic order. Grazing-angle x-ray diffraction, x-ray reflectivity, and electron diffraction analyses as well as transmission electron microscopy were used to investigate the interface abruptness, smoothness, and general crystallinity of the individual layers. Interdiffusion between MgO and Cu2O near interfacial regions places a limit of 250°C on the growth temperature for fabrication of superlattices with reasonably sharp interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.S.P. Parkin, C. Kaiser, A. Panchula, P.M. Rice, B. Hughes, M. Samant, and S.-H. Yang, Nat. Mater. 3, 862 (2004).

    Article  Google Scholar 

  2. G. Rijnders, Nat. Mater. 13, 844 (2014).

    Article  Google Scholar 

  3. J.H. Lee, G. Luo, I.C. Tung, S.H. Chang, Z. Luo, M. Malshe, M. Gadre, A. Bhattacharya, S.M. Nakhmanson, J.A. Eastman, H. Hong, J. Jellinek, D. Morgan, D.D. Fong, and J.W. Freeland, Nat. Mater. 13, 879 (2014).

    Article  Google Scholar 

  4. J.F. Afonso and V. Pardo, Phys. Rev. B 92, 235102 (2015).

    Article  Google Scholar 

  5. P. Zubko, S. Gariglio, M. Gabay, P. Ghosez, and J.-M. Triscone, Annu. Rev. Condens. Matter Phys. 2, 141 (2011).

    Article  Google Scholar 

  6. W.S. Choi, S.A. Lee, J.H. You, S. Lee, and H.N. Lee, Nat. Commun. 6, 7424 (2015).

    Article  Google Scholar 

  7. J. Chakhalian, J.W. Freeland, A.J. Millis, C. Panagopoulos, and J.M. Rondinelli, Rev. Mod. Phys. 86, 1189 (2014).

    Article  Google Scholar 

  8. P.M. Hiroaki Nishikawa, N. Iwata, T. Endo, Y. Takamura, and G.-H. Lee, Correlated Functional Oxides: Nanocomposites and Heterostructures (New York: Springer, 2016), pp. 5–30.

    Google Scholar 

  9. T.T. Paolo Mele, T. Endo, S. Arisawa, and C. Li, Oxide Thin Films, Multilayers, and Nanocomposites (Cham: Springer, 2015), pp. 27–38.

    Google Scholar 

  10. R.G. Ballas, Piezoelectric Multilayer Beam Bending Actuators (New York: Springer, 2007), pp. 77–100.

    Google Scholar 

  11. A. Frano, Spin Spirals and Charge Textures in Transition-Metal-Oxide Heterostructures (New York: Springer, 2014), pp. 91–138.

    Google Scholar 

  12. S.B. Ogale, Thin Films and Heterostructures for Oxide Electronics (New York: Springer, 2005), pp. 301–330.

    Google Scholar 

  13. L.L. Chang and B.C. Giessen, Synthetic Modulated Structures (London: Academic, 1985), pp. 113–156.

    Book  Google Scholar 

  14. H.M. Wei, H.B. Gong, L. Chen, M. Zi, and B.Q. Cao, J. Phys. Chem. C 116, 10510 (2012).

    Article  Google Scholar 

  15. S.S. Jeong, A. Mittiga, E. Salza, A. Masci, and S. Passerini, Electrochim. Acta 53, 2226 (2008).

    Article  Google Scholar 

  16. B.P. Rai, Sol. Cells 25, 8 (1988).

    Article  Google Scholar 

  17. R. Wick and S.D. Tilley, J. Phys. Chem. C 119, 26243 (2015).

    Article  Google Scholar 

  18. M. Pavan, S. Rhle, A. Ginsburg, D.A. Keller, H.N. Barad, P.M. Sberna, D. Nunes, R. Martins, A.Y. Anderson, A. Zaban, and E. Fortunato, Sol. Energy Mater. Sol. Cells 132, 549 (2015).

    Article  Google Scholar 

  19. M. Hara, T. Kondo, M. Komoda, S. Ikeda, K. Shinohara, A. Tanaka, J.N. Kondo, K. Domen, M. Hara, K. Shinohara, and A. Tanaka, Chem. Commun. 2, 357 (1998).

    Article  Google Scholar 

  20. H.-C. Wu, O. Mauit, C.Ó. Coileáin, A. Syrlybekov, A. Khalid, A. Mouti, M. Abid, H.-Z. Zhang, M. Abid, and I.V. Shvets, Sci. Rep. 4, 7012 (2014).

    Article  Google Scholar 

  21. D.R.G. Mitchell, D.J. Attard, and G. Triani, J. Cryst. Growth 285, 208 (2005).

    Article  Google Scholar 

  22. S.R.C. McMitchell, Y.Y. Tse, H. Bouyanfif, T.J. Jackson, I.P. Jones, and M.J. Lancaster, Appl. Phys. Lett. 95, 174102 (2009).

    Article  Google Scholar 

  23. M.B. Lee, M. Kawasaki, M. Yoshimoto, M. Kumagai, and H. Koinuma, Jpn. J. Appl. Phys.-Part 1 Regul. Pap. Short Notes 33, 6308 (1994).

    Article  Google Scholar 

  24. T.Y. Lee, D. Gall, C.S. Shin, N. Hellgren, I. Petrov, and J.E. Greene, J. Appl. Phys. 94, 921 (2003).

    Article  Google Scholar 

  25. J.W. Gerlach, J. Mennig, and B. Rauschenbach, Appl. Phys. Lett. 90, 061919 (2007).

    Article  Google Scholar 

  26. K. Inumaru, T. Ohara, and S. Yamanaka, Appl. Surf. Sci. 158, 375 (2000).

    Article  Google Scholar 

  27. K. Shikada, K. Tabuchi, M. Ohtake, F. Kirino, and M. Futamoto, J. Magn. Soc. Jpn. 32, 296 (2008).

    Article  Google Scholar 

  28. A. Kaul, O. Gorbenko, I. Graboy, M. Novojilov, A. Bosak, A. Kamenev, S. Antonov, I. Nikulin, A. Mikhaylov, and M. Kartavtzeva, MRS Proc. 755, 4026 (2002).

    Article  Google Scholar 

  29. S.B. Ogale, P.G. Bilurkar, N. Mate, N. Parikh, and B. Patnaik, J. Cryst. Growth 128, 714 (1993).

    Article  Google Scholar 

  30. K. Ogawa, T. Itoh, and K. Maki, Phys. Rev. B 62, 4269 (2000).

    Article  Google Scholar 

  31. H. Kobayashi, T. Nakamura, and N. Takahashi, Mater. Chem. Phys. 106, 292 (2007).

    Article  Google Scholar 

  32. M. Kawwam, F. Alharbi, A. Aldwayyan, and K. Lebbou, Appl. Surf. Sci. 258, 9949 (2012).

    Article  Google Scholar 

  33. M. Sohma, K. Kawaguchi, and Y. Fujii, J. Appl. Phys. 75, 1952 (1994).

    Article  Google Scholar 

  34. K. Barnham, J. Connolly, P. Griffin, G. Haarpaintner, J. Nelson, E. Tsui, A. Zachariou, J. Osborne, C. Button, G. Hill, M. Hopkinson, M. Pate, J. Roberts, and T. Foxon, J. Appl. Phys. 80, 1201 (1996).

    Article  Google Scholar 

  35. J. Li, Z. Mei, D. Ye, H. Liang, Y. Liu, and X. Du, J. Cryst. Growth 353, 63 (2012).

    Article  Google Scholar 

  36. P.A. Stampe, M. Bullock, W.P. Tucker, and J.K. Robin, J. Phys. D Appl. Phys. 32, 1778 (1999).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Y. Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M.J., Wadekar, P.V., Hsieh, W.C. et al. MgO/Cu2O Superlattices: Growth of Epitaxial Two-Dimensional Nanostructures. J. Electron. Mater. 45, 6285–6291 (2016). https://doi.org/10.1007/s11664-016-5049-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5049-5

Keywords

Navigation