Journal of Electronic Materials

, Volume 46, Issue 4, pp 1984–1995 | Cite as

Optimal Design of a Thermoelectric Cooling/Heating System for Car Seat Climate Control (CSCC)

  • Abdulmunaem ElarusiEmail author
  • Alaa Attar
  • Hosung Lee


In the present work, the optimum design of thermoelectric car seat climate control (CSCC) is studied analytically in an attempt to achieve high system efficiency. Optimal design of a thermoelectric device (element length, cross-section area and number of thermocouples) is carried out using our newly developed optimization method based on the ideal thermoelectric equations and dimensional analysis to improve the performance of the thermoelectric device in terms of the heating/cooling power and the coefficient of performance (COP). Then, a new innovative system design is introduced which also includes the optimum input current for the initial (transient) startup warming and cooling before the car heating ventilation and air conditioner (HVAC) is active in the cabin. The air-to-air heat exchanger's configuration was taken into account to investigate the optimal design of the CSCC.


Thermoelectric car seat climate control optimal design dimensional analysis thermoelectric cooler 

List of symbols


Cross-sectional area of thermoelement (mm2)


Cross-sectional area of thermoelectric module (mm2)


Total heat transfer area at cold heat sink (mm2)


Total heat transfer area at heat sink (mm2)


Total base area of cold heat sink (mm2)


Total base area of hot heat sink (mm2)


Profile length of cold heat sink (mm2)


Profile length of hot heat sink (mm2)


Coefficient of performance


Specific heat (J/kg K)


Driver’s metabolic unit (%)


Geometric ratio (mm


Conviction coefficient of cold fluid (W/m2 K)


Convection coefficient of hot fluid (W/m2 K)


Current (A)


Thermal conductance (W/m K)


Thermoelement length (mm)


Number of thermocouples


Number of fins for the cold heat sink


Number of fins for hot heat sink


Ratio of enthalpy flows


Ratio of enthalpy flow at the cold heat sink to the convection conductance


Dimensionless thermal conductance


Dimensionless current


Ratio of thermal convectance


Nusselt number


Cooling power (W)


Heating power (W)


Input power (W)


Power density (W/cm2)


Electrical resistance (Ω)


Cold junction temperature (K)


Hot junction temperature (K)

\(T_{{\infty {\rm{c}},{\rm{in}}}}\)

Cold fluid inlet temperature (K)

\(T_{{\infty {\rm{h}},{\rm{in}}}}\)

Hot fluid inlet temperature (K)

\(\Delta T_{\rm{cooling}}\)

Cold side temperature difference (K)

\(\Delta T_{\rm{heating}}\)

Hot side temperature difference (K)


Fin thickness of cold heat sink (mm)


Fin thickness of hot heat sink (mm)


Cold fluid volume flow rate (cfm)


Hot fluid volume flow rate (cfm)


Figure␣of merit (1/K)


Fin spacing of cold heat sink (mm)


Fin spacing of hot heat sink (mm)

Greek symbols


Seebeck coefficient (V/K)


Electric resistivity (Ω cm)


Total fin efficiency of cold heat sink


Total fin efficiency of hot heat sink









n-type element


p-type element



Dimensionless quantity


  1. 1.
    L.E. Alkire and W.H. Carter, US Patent 1439681 A, 26 Dec 1922.Google Scholar
  2. 2.
    L.H. Johnson, US Patent 3127931 A, 4 May 1964.Google Scholar
  3. 3.
    J. Lustbader, Evaluation of Advanced Automotive Seats to Improve Thermal Comfort and Fuel Economy, SAE Technical Paper 2005-01-2056 (2005). doi: 10.4271/2005-01-2056
  4. 4.
    S. Feher, Thermoelectric Air Conditioned Variable Temperature Seat (VTS) and Effect Upon Vehicle Occupant Comfort, Vehicle Energy Efficiency, and Vehicle Environmental Compatibility, SAE Technical Paper 931111 (1993). doi: 10.4271/931111.
  5. 5.
    D.F. Gallup, D.R. Noles, and R.R. Willis, US Patent, 3 Jun 2003.Google Scholar
  6. 6.
    M. Menon and H.H. Asada, in 2006 American Control Conference, (2006).Google Scholar
  7. 7.
    H.S. Choi, S. Yun, and K.I. Whang, Appl. Therm. Eng. 27, 2841 (2007).CrossRefGoogle Scholar
  8. 8.
    M. Vinoth and D. Prema, in 2014 International Conference on Computation of Power, Energy, Information and Communication (ICCPEIC), vol. 488 (2014).Google Scholar
  9. 9.
    H. Du, Y.P. Wang, X.H. Yuan, Y.D. Deng, and C.Q. Su, J. Electron. Mater. 44, 2203 (2014).Google Scholar
  10. 10.
    A. Attar, H. Lee, and S. Weera, J. Electron. Mater. 43, 2179 (2014).CrossRefGoogle Scholar
  11. 11.
    A. Attar and H. Lee, Energy Convers. Manag. 112, 328 (2016).CrossRefGoogle Scholar
  12. 12.
    A. Attar, H. Lee, and S. Weera, J. Electron. Mater. 44, 2177 (2015).CrossRefGoogle Scholar
  13. 13.
    H. Lee, Thermal Design: Heat Sinks, Thermoelectrics, Heat Pipes, Compact Heat Exchaners, and Solar Cells (New Jersey: Wiley, 2010).CrossRefGoogle Scholar
  14. 14.
    P. Teertstra, M.M. Yovanovich, and J.R. Culham, in Fifteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium (1999). doi: 10.1109/STHERM.1999.762426.
  15. 15.
    W. Zhimin and C.K. Fah, in Proceedings of the 1st Electronic Pachaging Technology Confernece (1997). doi: 10.1109/EPTC.1997.723898.
  16. 16.
    H. Lee, Appl. Energy 106, 79 (2013).CrossRefGoogle Scholar
  17. 17.
    H. Lee, A. Attar, and S.L. Weera, J. Electron. Mater. 44, 2157 (2015).CrossRefGoogle Scholar
  18. 18.
    A. Elarusi, H. Fagehi, H. Lee, and A. Attar, J. Electron. Mater. (2016). doi: 10.1007/s11664-016-4948-9.
  19. 19.
    H. Lee, Energy 56, 61 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  1. 1.Department of Mechanical and Aeronautical EngineeringWestern Michigan UniversityKalamazooUSA
  2. 2.Department of Aeronautical EngineeringUniversity of TripoliTripoliLibya
  3. 3.Department of Mechanical EngineeringKing Abdulaziz UniversityRabighSaudi Arabia

Personalised recommendations