Advertisement

Journal of Electronic Materials

, Volume 45, Issue 12, pp 6251–6257 | Cite as

Study of High-Quality GeSn Alloys Grown by Chemical Vapor Deposition towards Mid-Infrared Applications

  • Sattar Al-KabiEmail author
  • Seyed Amir Ghetmiri
  • Joe Margetis
  • Wei Du
  • Aboozar Mosleh
  • Wei Dou
  • Greg Sun
  • Richard A. Soref
  • John Tolle
  • Baohua Li
  • Mansour Mortazavi
  • Hameed A. Naseem
  • Shui-Qing Yu
Article

Abstract

Germanium-tin (GeSn) films with Sn compositions from 5% to 11% were grown on Ge-buffered Si using a reduced pressure chemical vapor deposition system with low-cost SnCl4 and GeH4 precursors. Material characterization showed that relaxed GeSn layers with thicknesses ranging from 400 nm to 1 μm were achieved. The strong photoluminescence (PL) intensity and the low defect density indicated very high material quality. In addition, temperature-dependent 10–300 K photoluminescence spectra showed that, due to strain relaxation of the material, the emission wavelength is longer than that of strained GeSn thin film samples (t < 200 nm) having the same Sn composition. At 300 K, the PL peak at 2520 nm was observed from the sample with a 1-μm-thick GeSn layer and 11% Sn composition.

Keywords

GeSn alloy chemical vapor deposition growth photoluminescence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The work in UA is supported by the National Science Foundation (NSF) under (DMR-1149605), Air Force Office of Scientific Research (AFOSR) under (FA9550-14-1-0205). The authors would also like to thank Institute for Nano Science and Engineering at the University of Arkansas for material characterization.

References

  1. 1.
    H. Ennen, G. Pomrenke, A. Axmann, K. Eisele, W. Haydl, and J. Schneider, Appl. Phys. Lett. 46, 381 (1985).CrossRefGoogle Scholar
  2. 2.
    H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Paniccia, Nature 433, 292 (2005).CrossRefGoogle Scholar
  3. 3.
    A.W. Fang, H. Park, O. Cohen, R. Jones, M.J. Paniccia, and J.E. Bowers, Opt. Express 14, 9203 (2006).CrossRefGoogle Scholar
  4. 4.
    H. Yang, D. Zhao, S. Chuwongin, J. Seo, W. Yang, Y. Shuai, J. Berggren, M. Hammar, Z. Ma, and W. Zhou, Nat. Photonics 6, 615 (2012).Google Scholar
  5. 5.
    R.E. Camacho-Aguilera, Y. Cai, N. Patel, J.T. Bessette, M. Romagnoli, L.C. Kimerling, and J. Michel, Opt. Express 20, 11316 (2012).CrossRefGoogle Scholar
  6. 6.
    J. Kouvetakis, J. Menendez, and A. Chizmeshya, Annu. Rev. Mater. Res. 36, 497 (2006).CrossRefGoogle Scholar
  7. 7.
    E. Kasper, Front. Optoelectron. China 3, 143 (2010).CrossRefGoogle Scholar
  8. 8.
    L. Jiang, C. Xu, J.D. Gallagher, R. Favaro, T. Aoki, J. Menéndez, and J. Kouvetakis, Chem. Mater. 26, 2522 (2014).CrossRefGoogle Scholar
  9. 9.
    S. Zaima, O. Nakatsuka, N. Taoka, M. Kurosawa, W. Takeuchi, and M. Sakashita, Sci. Tech. Adv. Mater. 16, 043502 (2015).CrossRefGoogle Scholar
  10. 10.
    G. He and H.A. Atwater, Phys. Rev. Lett. 79, 1937 (1997).CrossRefGoogle Scholar
  11. 11.
    R. Ragan and H.A. Atwater, Appl. Phys. Lett. 77, 3418 (2000).Google Scholar
  12. 12.
    K. Alberi, J. Blacksberg, L. Bell, S. Nikzad, K. Yu, O. Dubon, and W. Walukiewicz, Phys. Rev. B 77, 073202 (2008).CrossRefGoogle Scholar
  13. 13.
    M. Bauer, J. Taraci, J. Tolle, A. Chizmeshya, S. Zollner, D.J. Smith, J. Menendez, C. Hu, and J. Kouvetakis, Appl. Phys. Lett. 81, 2992 (2002).CrossRefGoogle Scholar
  14. 14.
    S.A. Ghetmiri, W. Du, J. Margetis, A. Mosleh, L. Couser, B.R. Conley, L. Domulevicz, A. Nazzal, G. Sun, R.A. Soref, J. Tolle, B. Li, H.A. Naseem, and S. Yu, Appl. Phys. Lett. 105, 151109 (2014).CrossRefGoogle Scholar
  15. 15.
    S. Wirths, R. Geiger, N. von den Driesch, G. Mussler, T. Stoica, S. Mantl, Z. Ikonic, M. Luysberg, S. Chiussi, and J. Hartmann, Nat. Photonics 9, 88 (2015).CrossRefGoogle Scholar
  16. 16.
    B.R. Conley, J. Margetis, W. Du, H. Tran, A. Mosleh, S.A. Ghetmiri, J. Tolle, G. Sun, R. Soref, B. Li, H.A. Naseem, and S. Yu, Appl. Phys. Lett. 105, 221117 (2014).CrossRefGoogle Scholar
  17. 17.
    B. Conley, L. Huang, S. A. Ghetmiri, A. Mosleh, W. Du, G. Sun, R. Soref, J. Tolle, H.A. Naseem, and S. Yu, in CLEO: Science and Innovations (2014).Google Scholar
  18. 18.
    J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, Appl. Phys. Lett. 98, 061108 (2011).CrossRefGoogle Scholar
  19. 19.
    S. Wirths, R. Geiger, P. Scherrer, Z. Ikonic, A. T. Tiedemann, G. Mussler, J. Hartmann, S. Mantl, H. Sigg, D. Grützmacher, and D. Buca, 11th IEEE International Conference on Group IV Photonics GFP, pp. 15 (2014).Google Scholar
  20. 20.
    S. Kim, J. Gupta, N. Bhargava, M. Coppinger, and J. Kolodzey, Electron Device Lett. IEEE 34, 1217 (2013).CrossRefGoogle Scholar
  21. 21.
    J. Werner, M. Oehme, A. Schirmer, E. Kasper, and J. Schulze, Thin Solid Films 520, 3361 (2012).CrossRefGoogle Scholar
  22. 22.
    J. Kouvetakis, J. Menendez, and R. A. Soref, U.S. Patent 6897471 B1 issued May 24 (2005).Google Scholar
  23. 23.
    T. Pham, W. Du, H. Tran, J. Margetis, J. Tolle, G. Sun, R.A. Soref, H.A. Naseem, B. Li, and S. Yu, Opt. Express 24, 4519 (2016).CrossRefGoogle Scholar
  24. 24.
    R.W. Hoogeveen and A.P. Goede, Infrared Phys. Technol. 42, 1 (2001).CrossRefGoogle Scholar
  25. 25.
    C. Grein, P. Young, M. Flatté, and H. Ehrenreich, J. Appl. Phys. 78, 7143 (1995).CrossRefGoogle Scholar
  26. 26.
    S. Al-Kabi, S.A. Ghetmiri, J. Margetis, W. Du, A. Mosleh, M. Alher, W. Dou, J.M. Grant, G. Sun, R.A. Soref, J. Tolle, B. Li, M. Mortazavi, H.A. Naseem, and S. Yu, J. Electron. Mater. 45, 2133 (2016).CrossRefGoogle Scholar
  27. 27.
    J. Margetis, A. Mosleh, S. Al-Kabi, S.A. Ghetmiri, W. Du, W. Dou, M. Benamara, B. Li, M. Mortazavi, H.A. Naseem, S. Yu, and J. Tolle, ASM International, unpublished research, 2016.Google Scholar
  28. 28.
    A. Mosleh, S.A. Ghetmiri, B.R. Conley, M. Hawkridge, M. Benamara, A. Nazzal, J. Tolle, S. Yu, and H.A. Naseem, J. Electron. Mater. 43, 938 (2014).CrossRefGoogle Scholar
  29. 29.
    W. Du, S.A. Ghetmiri, B.R. Conley, A. Mosleh, A. Nazzal, R.A. Soref, G. Sun, J. Tolle, J. Margetis, H.A. Naseem, and S. Yu, Appl. Phys. Lett. 105, 051104 (2014).CrossRefGoogle Scholar
  30. 30.
    H. Tran, W. Du, S.A. Ghetmiri, A. Mosleh, G. Sun, R.A. Soref, J. Margetis, J. Tolle, B. Li, H.A. Naseem, and S. Yu, J. Appl. Phys. 119, 103106 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  • Sattar Al-Kabi
    • 1
    • 2
    • 3
    Email author
  • Seyed Amir Ghetmiri
    • 1
    • 2
  • Joe Margetis
    • 4
  • Wei Du
    • 2
    • 5
  • Aboozar Mosleh
    • 2
  • Wei Dou
    • 2
  • Greg Sun
    • 6
  • Richard A. Soref
    • 6
  • John Tolle
    • 4
  • Baohua Li
    • 7
  • Mansour Mortazavi
    • 5
  • Hameed A. Naseem
    • 2
  • Shui-Qing Yu
    • 2
  1. 1.MicroElectronics-Photonics ProgramUniversity of ArkansasFayettevilleUSA
  2. 2.Department of Electrical EngineeringUniversity of ArkansasFayettevilleUSA
  3. 3.Department of PhysicsWasit UniversityKutIraq
  4. 4.ASMPhoenixUSA
  5. 5.Department of Chemistry and PhysicsUniversity of Arkansas at Pine BluffPine BluffUSA
  6. 6.Department of EngineeringUniversity of Massachusetts BostonBostonUSA
  7. 7.ArktonicsLLCFayettevilleUSA

Personalised recommendations