Skip to main content

RSM Base Study of the Effect of Argon Gas Flow Rate and Annealing Temperature on the [Bi]:[Te] Ratio and Thermoelectric Properties of Flexible Bi-Te Thin Film

Abstract

Bismuth telluride (Bi-Te) thin films coated on a flexible substrate were prepared by RF (radio frequency) magnetron sputtering technique. A response surface methodology based on a central composite design was used to optimize deposition parameters, including the amount of Ar gas flow rate (100.5–106.5 sccm) in the sputtering process and the annealing temperature (250–320°C) for stoichiometric Bi2Te3 thin films. The mathematical model was validated and proven to be statistically sufficient and accurate in predicting a response (Te content). The stoichiometric Bi2Te3 thin films can be prepared on terms appropriate to the Ar flow rate and annealing temperature under several conditions, such as at the Ar flow rate of 103.5 sccm followed by an annealing temperature of 285°C. The characterization of the crystal structure and surface morphology of selected samples with different [Bi]:[Te] content were analyzed by x-ray diffraction (XRD) and a field emission scanning electron microscope, respectively. The XRD spectra showed Bi-Te and Bi2Te3 structures that corresponded with the ratio of [Bi]:[Te]. The Seebeck coefficient and electrical conductivity were simultaneously measured at room temperature and up to 300°C by a direct current four-terminal method. The maximum power factor of the stoichiometric Bi2Te3 thin film was 61×10−5 W/K2m at 243°C.

This is a preview of subscription content, access via your institution.

References

  1. H.J. Lee, S. Hyun, H.S. Park, and S.W. Han, Microelectron. Eng. 88, 593 (2011).

    Article  Google Scholar 

  2. H.J. Lee, H.S. Park, S.W. Han, and J.Y. Kim, Thermochim. Acta 542, 57 (2012).

    Article  Google Scholar 

  3. H. Huang, L. Wei-ling, and T. Shan-tung, Thin Solid Films 517, 3731 (2009).

    Article  Google Scholar 

  4. X. Wang, H. He, N. Wang, and L. Miao, Appl. Surf. Sci. 276, 539 (2013).

    Article  Google Scholar 

  5. C. Zhao-kun, F. Ping, Z. Zhuang-hao, L. Peng-juan, C. Tian-bao, C. Xing-min, L. Jing-ting, L. Guang-xing, and Z. Dong-ping, Appl. Surf. Sci. 280, 225 (2013).

    Article  Google Scholar 

  6. K. Dong-Ho, E. Byon, L. Gun-Hwan, and S. Cho, Thin Solid Films 510, 148 (2006).

    Article  Google Scholar 

  7. L.M. Goncalves, C. Couto, P. Alpuim, A.G. Rolo, F. Völklein, and J.H. Correia, Thin Solid Films 518, 2816 (2010).

    Article  Google Scholar 

  8. L.M. Goncalves, P. Alpuim, G. Min, D.M. Rowe, C. Couto, and J.H. Correia, J. Vac. 82, 1499 (2008).

    Article  Google Scholar 

  9. T. Jun-Ichi and H. Kido, J. Ceram. Soc. Jpn. 123, 298 (2015).

    Article  Google Scholar 

  10. R.S. Makala, K. Jagannadham, and B.C. Sales, J. Appl. Phys. 94, 3907 (2003).

    Article  Google Scholar 

  11. A. Dauscher, A. Thomy, and H. Scherrer, Thin Solid Films 280, 61 (1996).

    Article  Google Scholar 

  12. Y. Deng, L. Hui-min, Y. Wang, Z. Zhi-wei, M. Tan, and C. Jiao-lin, J. Alloys Compd. 509, 5683 (2011).

    Article  Google Scholar 

  13. J. Wu, W. Jia-Le, L. Min-Hua, L. Jin-Ping, and W. Dong-Zhi, Bioresour. Technol. 101, 8936 (2010).

    Article  Google Scholar 

  14. M. Ebrahimi, F. Mahboubi, and M.R. Naimi-Jamal, Tribol. Int. 91, 23 (2015).

    Article  Google Scholar 

  15. I. Noshadi, N.A.S. Amin, and Richard S. Parnas, J. Fule 94, 156–164 (2012).

    Article  Google Scholar 

  16. F. Gül Boyaci San, I. Isik-Gulsac, and O. Okur, J. Energy 55, 1067 (2013).

    Article  Google Scholar 

  17. M. Mamunur Rashid, K.H. Cho, and C. Gwiy-Sang, Appl. Surf. Sci. 279, 23 (2013).

    Article  Google Scholar 

  18. L. Seon-Hong, E. Yamasue, H. Okumura, and K.N. Ishihara, Appl. Surf. Sci. 324, 339 (2015).

    Article  Google Scholar 

  19. H. Feng-Hao, W. Na-Fu, T. Yu-Zen, C. Ming-Chieh, C. Yu-Song, and H. Mau-Phon, Appl. Surf. Sci. 280, 104 (2013).

    Article  Google Scholar 

  20. Y. Sun, E. Zhang, S. Johnsen, M. Sillassen, P. Sun, F. Steglich, J. Bøttiger, and B.B. Iversen, Thin Solid Films 519, 5397 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pilaipon Nuthongkum.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nuthongkum, P., Sakulkalavek, A. & Sakdanuphab, R. RSM Base Study of the Effect of Argon Gas Flow Rate and Annealing Temperature on the [Bi]:[Te] Ratio and Thermoelectric Properties of Flexible Bi-Te Thin Film. J. Electron. Mater. 46, 2900–2907 (2017). https://doi.org/10.1007/s11664-016-5024-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5024-1

Keywords

  • Flexible Bi2Te3
  • RSM
  • thermoelectric
  • RF sputtering