Skip to main content
Log in

Fourier Transform Infrared Spectroscopy Measurements of Multi-phonon and Free-Carrier Absorption in ZnO

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Fourier transform infrared (FTIR) measurements were carried out on thin films and bulk single crystals of ZnO over a wide temperature range to study the free-carrier and multi-phonon infrared absorptions and the effects of hydrogen incorporation on these properties. Aluminum-doped ZnO thin films were deposited on quartz substrates using atomic-layer deposition (ALD) and sol–gel methods. Hall-effect measurements showed that the ALD films have a resistivity of ρ = 1.11 × 10−3 Ω cm, three orders of magnitude lower than sol–gel films (ρ = 1.25 Ω cm). This result is consistent with the significant difference in their free-carrier absorption as revealed by FTIR spectra obtained at room temperature. By reducing the temperature to 80 K, the free carriers were frozen out, and their absorption spectrum was suppressed. From the FTIR measurements on ZnO single crystals that were grown by the chemical vapor transport method, we identified a shoulder around 3350 cm−1 and associated it with the presence of two or more hydrogen ions in a Zn vacancy. After reducing the hydrogen level in the crystal, the measurements revealed the multi-phonon absorption of ZnO in the range of 700–1200 cm−1. This study shows that the multi-phonon absorption bands can be completely masked by the presence of a large concentration of hydrogen in the crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Zhang, W. Yu, and L. Zhang, Phys. Lett. A 299, 276 (2002).

    Article  Google Scholar 

  2. B.D. Ryu, P. Uthirakumar, J.H. Kang, B.J. Kwon, S. Chandramohan, H.K. Kim, H.Y. Kim, J.H. Ryu, H.G. Kim, and C.H. Hong, J. Appl. Phys. 109, 093116 (2011).

    Article  Google Scholar 

  3. Y.W. Zhu, H.Z. Zhang, X.C. Sun, S.Q. Feng, J. Xu, Q. Zhao, B. Xiang, R.M. Wang, and D.P. Yu, Appl. Phys. Lett. 83, 144 (2003).

    Article  Google Scholar 

  4. F.A. Selim, M.C. Tarun, D.E. Wall, L.A. Boatner, and M.D. McCluskey, Appl. Phys. Lett. 99, 202109 (2011).

    Article  Google Scholar 

  5. Ü. ÖzgÜr, Y.I. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Doğan, V.C. Avrutin, S.J. Cho, and H. Morkoc, J. Appl. Phys. 98, 041301 (2005).

    Article  Google Scholar 

  6. K. Ellmer, A. Klein, and B. Rech, Transparent Conductive Zinc Oxide: Basics and Applications in Thin Film Solar Cells (Berlin: Springer, 2007), p. 1.

  7. A. Stadler, Materials 5, 661 (2012).

    Article  Google Scholar 

  8. P.A. Rodnyi and I.V. Khodyuk, Opt. Spectrosc. 111, 776 (2011).

    Article  Google Scholar 

  9. N.T. Son, J. Isoya, I.G. Ivanov, T. Ohshima, and E. Janzén, J. Phys. Condens. Matter 25, 335804 (2013).

    Article  Google Scholar 

  10. M. Tarun, M.Z. Iqbal, and M.D. McCluskey, AIP Adv. 1, 022105 (2011).

    Article  Google Scholar 

  11. J.L. Lyons, A. Janotti, and C.G. Van de Walle, Appl. Phys. Lett. 95, 252105 (2009).

    Article  Google Scholar 

  12. C.G. Van de Walle and G. Chris, Phys. Rev. Lett. 85, 1012 (2000).

    Article  Google Scholar 

  13. D.C. Look, J.W. Hemsky, and J.R. Sizelove, Phys. Rev. Lett. 82, 2552 (1999).

    Article  Google Scholar 

  14. E.C. Lee, Y.S. Kim, Y.G. Jin, and K.J. Chang, Phys. Rev. B 64, 085120 (2001).

    Article  Google Scholar 

  15. H.H. Nahm, C.H. Park, and Y.S. Kim, Sci. Rep. 4, 4124 (2014).

  16. C.G. Van de Walle and J. Neugebauer, Nature 423, 626 (2003).

    Article  Google Scholar 

  17. A. Janotti and C.G. Van de Walle, Nat. Mater. 6, 44 (2007).

    Article  Google Scholar 

  18. C.F. Windisch Jr, G.J. Exarhos, C. Yao, and L.Q. Wang, J. Appl. Phys. 101, 123711 (2007).

    Article  Google Scholar 

  19. F.A. Selim, M.H. Weber, D. Solodovnikov, and K.G. Lynn, Phys. Rev. Lett. 99, 085502 (2007).

    Article  Google Scholar 

  20. J. Koßmann and C. Hättig, Phys. Chem. Chem. Phys. 14, 16392 (2012).

    Article  Google Scholar 

  21. H. Qiu, B. Meyer, Y. Wang, and C. Wöll, Phys. Rev. Lett. 101, 236401 (2008).

    Article  Google Scholar 

  22. K. Ip, M.E. Overberg, Y.W. Heo, D.P. Norton, S.J. Pearton, C.E. Stutz, B. Luo, F. Ren, D.C. Look, and J.M. Zavada, Appl. Phys. Lett. 82, 385 (2003).

    Article  Google Scholar 

  23. S.G. Koch, E.V. Lavrov, and J. Weber, Phys. Rev. Lett. 108, 165501 (2012).

    Article  Google Scholar 

  24. R.K. Willardson, E.R. Weber, and M. Stavola, Identification of Defects in Semiconductors (New York: Academic Press, 1998).

  25. M.D. McCluskey, S.J. Jokela, and W.H. Oo, Phys. B 376, 690 (2006).

    Article  Google Scholar 

  26. G.A. Shi, M. Stavola, S.J. Pearton, M. Thieme, E.V. Lavrov, and J. Weber, Phys. Rev. B 72, 195211 (2005).

    Article  Google Scholar 

  27. M.D. McCluskey, S.J. Jokela, K.K. Zhuravlev, P.J. Simpson, and K.G. Lynn, Appl. Phys. Lett. 81, 3807 (2002).

    Article  Google Scholar 

  28. S.J. Jokela, M.D. McCluskey, and K.G. Lynn, Phys. B 340, 221 (2003).

    Article  Google Scholar 

  29. F. Herklotz, E.V. Lavrov, Vl. Kolkovsky, J. Weber, and M. Stavola, Phys. Rev. B 82, 11520 (2010).

    Article  Google Scholar 

  30. E.V. Lavrov, J. Weber, F. Börrnert, C.G. Van de Walle, and R. Helbig, Phys. Rev. B 66, 165205 (2002).

    Article  Google Scholar 

  31. S.J. Jokela and M.D. McCluskey, Phys. Rev. B 72, 113201 (2005).

    Article  Google Scholar 

  32. M.D. McCluskey and S.J. Jokela, J. Appl. Phys. 106, 071101 (2009).

    Article  Google Scholar 

  33. E.V. Lavrov, F. Börrnert, and J. Weber, Phys. Rev. B 71, 035205 (2005).

    Article  Google Scholar 

  34. P. Suhendro Purbo, World J. Condens. Matter. Phys. (2011). doi:10.4236/wjcmp.2011.14019.

    Google Scholar 

  35. P. Fellgett, J. Phys. Radium 19, 187 (1958).

    Article  Google Scholar 

  36. P. Jacquinot, Rep. Prog. Phys. 23, 267 (1960).

    Article  Google Scholar 

  37. M. Haseman, P. Saadatkia, D.J. Winarski, F.A. Selim, K.D. Leedy, S. Tetlak, D.C. Look, W. Anwand, and A. Wagner, J. Electron. Mater. (2016). doi:10.1007/s11664-016-5025-0

  38. D.J. Winarski, W. Anwand, A. Wagner, P. Saadatkia, F.A. Selim, M. Allen, B. Wenner, K. Leedy, J. Allen, S. Tetlak, and D.C. Look, AIP Adv. 6, 095004 (2016).

    Article  Google Scholar 

  39. J. Ji, L.A. Boatner, and F.A. Selim, Appl. Phys. Lett. 105, 041102 (2014).

    Article  Google Scholar 

  40. D.C. Look, D.C. Reynolds, J.R. Sizelove, R.L. Jones, C.W. Litton, G. Cantwell, and W.C. Harsch, Solid State Commun. 105, 399 (1998).

    Article  Google Scholar 

  41. J.M. Ntep, S.S. Hassani, A. Lusson, A. Tromson-Carli, D. Ballutaud, G. Didier, and R. Triboulet, J. Cryst. Growth 207, 30 (1999).

    Article  Google Scholar 

  42. D.G. Thomas, J. Phys. Chem. Solids 10, 47 (1959).

    Article  Google Scholar 

  43. N.Y. Garces, L. Wang, N.C. Giles, L.E. Halliburton, D.C. Look, and D.C. Reynolds, J. Electron. Mater. 32, 766 (2003).

    Article  Google Scholar 

  44. P.Y. Emelie, J.D. Phillips, B. Buller, and U.D. Venkateswaran, J. Electron. Mater. 35, 525 (2006).

    Article  Google Scholar 

  45. R. Arneth, Z. Phys. 155, 595 (1959).

    Article  Google Scholar 

  46. S.S. Mitra, R. Marshall, Proceedings of the 7th International Conference on Physics and Semiconductors (1965), p. 1085.

  47. G. Heiland and H. Lüth, Solid State Commun. 5, 199 (1967).

    Article  Google Scholar 

  48. H. Lüth, Solid State Commun. 7, 585 (1969).

    Article  Google Scholar 

  49. J. Yang, G.J. Brown, M. Dutta, and M.A. Stroscio, J. Appl. Phys. 98, 043517 (2005).

    Article  Google Scholar 

  50. M. Arakawa, H. Kagi, and H. Fukazawa, Astrophys. J. Suppl. Ser. 184, 361 (2009).

    Article  Google Scholar 

  51. E.V. Lavrov, Phys. B 340, 195 (2003).

    Article  Google Scholar 

  52. E.V. Lavrov, F. Börrnert, and J. Weber, Phys. B 401, 366 (2007).

    Article  Google Scholar 

  53. M.G. Wardle, J.P. Goss, and P.R. Briddon, Phys. Rev. B 72, 155108 (2005).

    Article  Google Scholar 

  54. F. Herklotz, A. Hupfer, K.M. Johansen, B.G. Svensson, S.G. Koch, and E.V. Lavrov, Phys. Rev. B 92, 155203 (2015).

    Article  Google Scholar 

  55. J. Ji, A.M. Colosimo, W. Anwand, L.A. Boatner, A. Wagner, P.S. Stepanov, T.T. Trinh, M.O. Liedke, R. Krause-Rehberg, T.E. Cowan, and F.A. Selim, Sci. Rep. 6, 31238 (2016).

    Article  Google Scholar 

  56. L.H. Zhao, R. Zhang, J. Zhang, and S.Q. Sun, Cryst. Eng. Commun. 14, 945 (2012).

    Article  Google Scholar 

  57. A.M. Awwad, B. Albiss, and A.L. Ahmad, Adv. Mater. Lett 5, 520 (2014).

    Article  Google Scholar 

  58. D. Gnanasangeetha and S.D. Thambavani, Int. J. Pharm. Sci. Res. 5, 2866 (2014).

    Google Scholar 

  59. G.R. Dillip, A.N. Banerjee, V.C. Anitha, B. Deva Prasad Raju, S.W. Joo, and B.K. Min, ACS Appl. Mater. Interfaces 8, 5025 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank Wallace Rice for his help with FTIR setup. This work was funded by Air Force office of Scientific Research, Summer Faculty Fellowship Program (AFOSR-SFFP-2015). Research at the Oak Ridge National Laboratory for one author (LAB) was sponsored by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. A. Selim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saadatkia, P., Ariyawansa, G., Leedy, K.D. et al. Fourier Transform Infrared Spectroscopy Measurements of Multi-phonon and Free-Carrier Absorption in ZnO. J. Electron. Mater. 45, 6329–6336 (2016). https://doi.org/10.1007/s11664-016-5023-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5023-2

Keywords

Navigation