Journal of Electronic Materials

, Volume 45, Issue 12, pp 6222–6232 | Cite as

Probing Phase Transformations and Microstructural Evolutions at the Small Scales: Synchrotron X-ray Microdiffraction for Advanced Applications in 3D IC (Integrated Circuits) and Solar PV (Photovoltaic) Devices

  • I. Radchenko
  • S. K. Tippabhotla
  • N. Tamura
  • A. S. Budiman
Article

Abstract

Synchrotron x-ray microdiffraction (\(\upmu \hbox {XRD}\)) allows characterization of a crystalline material in small, localized volumes. Phase composition, crystal orientation and strain can all be probed in few-second time scales. Crystalline changes over a large areas can be also probed in a reasonable amount of time with submicron spatial resolution. However, despite all the listed capabilities, \(\upmu \hbox {XRD}\) is mostly used to study pure materials but its application in actual device characterization is rather limited. This article will explore the recent developments of the \(\upmu \hbox {XRD}\) technique illustrated with its advanced applications in microelectronic devices and solar photovoltaic systems. Application of \(\upmu \hbox {XRD}\) in microelectronics will be illustrated by studying stress and microstructure evolution in Cu TSV (through silicon via) during and after annealing. The approach allowing study of the microstructural evolution in the solder joint of crystalline Si solar cells due to thermal cycling will be also demonstrated.

Keywords

Reliability solar PV \(\upmu \hbox {XRD}\) TSV 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Zhou, W. Zhu, H. Shen, Y. Li, A. Zhang, N. Tamura, and K. Chen, Sci. Rep. 6, 28144 (2016).CrossRefGoogle Scholar
  2. 2.
    X. Chen, N. Tamura, A. MacDowell, and R.D. James, Appl. Phys. Lett. 108, 211902 (2016).CrossRefGoogle Scholar
  3. 3.
    A. Budiman, K.R. Narayanan, N. Li, J. Wang, N. Tamura, M. Kunz, and A. Misra, Mater. Sci. Eng. A 635, 6 (2015).CrossRefGoogle Scholar
  4. 4.
    A. Budiman, P. Besser, C. Hau-Riege, A. Marathe, Y.C. Joo, N. Tamura, J. Patel, and W. Nix, J. Electron. Mater. 38, 379 (2009).CrossRefGoogle Scholar
  5. 5.
    A. Budiman, C. Hau-Riege, W. Baek, C. Lor, A. Huang, H. Kim, G. Neubauer, J. Pak, P. Besser, and W. Nix, J. Electron. Mater. 39, 2483 (2010).CrossRefGoogle Scholar
  6. 6.
    K. Chen, N. Tamura, B. Valek, and K. Tu, J. Appl. Phys. 104, 013513 (2008).CrossRefGoogle Scholar
  7. 7.
    Y. Liu, N. Tamura, D.W. Kim, S. Gu, and K. Tu, Scr. Mater. 102, 39 (2015).CrossRefGoogle Scholar
  8. 8.
    A. Budiman, H.A.S. Shin, B.J. Kim, S.H. Hwang, H.Y. Son, M.S. Suh, Q.H. Chung, K.Y. Byun, N. Tamura, M. Kunz, and Y.C. Joo, Microelectron. Reliab. 52, 530 (2012).CrossRefGoogle Scholar
  9. 9.
    A. Budiman, G. Illya, V. Handara, W. Caldwell, C. Bonelli, M. Kunz, N. Tamura, and D. Verstraeten, Sol. Energy Mater. Sol. Cells 130, 303 (2014).CrossRefGoogle Scholar
  10. 10.
    K.N. Rengarajan, I. Radchenko, G. Illya, V. Handara, M. Kunz, N. Tamura, and A.S. Budiman, Procedia Eng. 139, 76 (2016).CrossRefGoogle Scholar
  11. 11.
    S.K. Tippabhotla, I. Radchenko, K.N. Rengarajan, G. Illya, V. Handara, M. Kunz, N. Tamura, and A.S. Budiman, Procedia Eng. 139, 123 (2016).CrossRefGoogle Scholar
  12. 12.
    R. Barabash and G. Ice (eds.), Strain and Dislocation Gradients from Diffraction. Spatially Resolved Local Structure and Defects (London: Imperial College Press, 2014), p. 125.Google Scholar
  13. 13.
    N. Tamura, M. Kunz, K. Chen, R. Celestre, A. MacDowell, and T. Warwick, Mater. Sci. Eng. A 524, 28 (2009).CrossRefGoogle Scholar
  14. 14.
    K. Banerjee, S.J. Souri, P. Kapur, and K.C. Saraswat, Proc. IEEE 89, 602 (2001).CrossRefGoogle Scholar
  15. 15.
    J.U. Knickerbocker, P.S. Andry, L.P. Buchwalter, A. Deutsch, R.R. Horton, K.A. Jenkins, Y.H. Kwark, G. McVicker, C.S. Patel, R.J. Polastre, R.J. Schuster, A. Sharma, S.M. Sri-Jayantha, C.W. Surovic, C.K. Tsang, B.C. Webb, S.L. Wright, S.R. McKnight, E.J. Sprogis, and B. Dang, IBM J. Res. Dev. 49, 725 (2005).CrossRefGoogle Scholar
  16. 16.
    S.E. Thompson, G. Sun, Y.S. Choi, and T. Nishida, IEEE Trans. Electron. Dev. 53, 1010 (2006).CrossRefGoogle Scholar
  17. 17.
    C. Okoro, Y. Yang, B. Vandevelde, B. Swinnen, D. Vandepitte, B. Verlinden, and I. De Wolf, in International Interconnect Technology Conference, 2008 (IITC 2008) (2008), p. 16.Google Scholar
  18. 18.
    X. Liu, Q. Chen, P. Dixit, R. Chatterjee, R.R. Tummala, and S.K. Sitaraman, in 59th Electronic Components and Technology Conference, 2009 (ECTC 2009) (2009), p. 624.Google Scholar
  19. 19.
    M.H. Liao, M.Y. Yu, G.H. Liu, C.H. Chen, and T.K. Hsu, AIP Adv. 3, 082123 (2013).CrossRefGoogle Scholar
  20. 20.
    S.S. Sapatnekar, IEEE J. Emerg. Sel. Top. Circuits Syst. 1, 5 (2011).Google Scholar
  21. 21.
    J.M. Paik, I.M. Park, and Y.C. Joo, Thin Solid Films 504, 284 (2006).CrossRefGoogle Scholar
  22. 22.
    T. Tian, R. Morusupalli, H. Shin, H.Y. Son, K.Y. Byun, Y.C. Joo, R. Caramto, L. Smith, Y. Shen, M. Kunz, N. Tamura, and A. Budiman, Procedia Eng. 139, 101 (2016).CrossRefGoogle Scholar
  23. 23.
    K.H. Lu, X. Zhang, S.K. Ryu, J. Im, R. Huang, and P.S. Ho, in 59th Electronic Components and Technology Conference, 2009 (ECTC 2009) (2009), p. 630.Google Scholar
  24. 24.
    T. Lu, J. Yang, Z. Suo, A. Evans, R. Hecht, and R. Mehrabian, Acta Metall. Mater. 39, 1883 (1991).CrossRefGoogle Scholar
  25. 25.
    D.S. Steinberg, Preventing Thermal Cycling and Vibration Failures in Electronic Equipment (New York: Wiley, 2001).Google Scholar
  26. 26.
    A.M. Gabor, M. Ralli, S. Montminy, L. Alegria, C. Bordonaro, J. Woods, L. Felton, M. Davis, B. Atchley, and T. Williams, in 21st European Photovoltaic Solar Energy Conference (Dresden, 2006), p. 4.Google Scholar
  27. 27.
    J. Wendt, M. Träger, M. Mette, A. Pfennig, and B. Jäckel, in Proceedings of the 24th EUPVSEC (2009), p. 3420.Google Scholar
  28. 28.
    H. Pang, K. Tan, X. Shi, and Z. Wang, Mater. Sci. Eng. A 307, 42 (2001).CrossRefGoogle Scholar
  29. 29.
    J.H. Pang, T. Low, B. Xiong, X. Luhua, and C. Neo, Thin Solid Films 462, 370 (2004).CrossRefGoogle Scholar
  30. 30.
    Z. Mei, M. Ahmad, M. Hu, and G. Ramakrishna, in Proceedings of the 55th Electronic Components and Technology Conference, 2005 (2005), p. 415.Google Scholar
  31. 31.
    B.J. Kim, G.T. Lim, J. Kim, K. Lee, Y.B. Park, H.Y. Lee, and Y.C. Joo, J. Electron. Mater. 39, 2281 (2010).CrossRefGoogle Scholar
  32. 32.
    B.D. Culty, Elements of X-ray Diffraction (New York: Addision-Wesley, 1978), p. 149Google Scholar
  33. 33.
    B.J. Kim, J.H. Kim, S.H. Hwang, A.S. Budiman, H.Y. Son, K.Y. Byun, N. Tamura, M. Kunz, D.I. Kim, and Y.C. Joo, J. Electron. Mater. 41, 712 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  • I. Radchenko
    • 1
  • S. K. Tippabhotla
    • 1
  • N. Tamura
    • 2
  • A. S. Budiman
    • 1
  1. 1.Engineering Products Development (EPD) PillarSingapore University of Technology and Design (SUTD)SingaporeSingapore
  2. 2.Advanced Light Source (ALS)Lawrence Berkeley National Laboratory (LBNL)BerkeleyUSA

Personalised recommendations