Skip to main content
Log in

Ultra-low Contact Resistivity of PtHf Silicide Utilizing Dopant Segregation Process

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We investigated the dopant segregation (DS) process for PtHf silicide to realize low contact resistivity. After the patterning of SiO2 hard mask and heavily doped n+ diffusion region formation on p-Si(100) substrates, 20 nm-thick PtHf-alloy thin film with 10 nm-thick HfN encapsulating layer was deposited in situ utilizing a PtHf-alloy target by RF magnetron sputtering at room temperature. Then, PH3 ion implantation was carried out for DS followed by silicidation at 450–500°C/5–60 min in N2/4.9%H2 ambient. After Al electrode formation, a sintering process was carried out at 400°C/20 min in N2/4.9%H2 ambient. Ultra-low contact resistivity was achieved for fabricated PtHSi with a DS process on the order of 2.5 × 10−8 Ω cm2 evaluated by the cross-bridge Kelvin resistor method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Datta, R. Pandey, A. Agrawal, S.K. Gupta, and R. Arghavani, in VLSI Technical Symposium (2014), p. 174.

  2. T. Futase, N. Hashikawa, H. Yamamoto, and H. Tanimoto, IEEE Trans. Semicond. Manuf. 24, 325 (2011).

    Article  Google Scholar 

  3. J. Luo, Y.-L. Jiang, G.-P. Ru, B.-Z. Li, and P.K. Chu, J. Electron. Mater. 37, 245 (2008).

    Article  Google Scholar 

  4. E.J. Jung, S.-W. Jung, H.-S. Kim, J.-H. Yun, S.H. Cheong, B.H. Kim, G.H. Choi, S.T. Kim, U.-I. Chung, J.T. Moon, and B.I. Ryu, Microelectron. Eng. 82, 449 (2005).

    Article  Google Scholar 

  5. T. Futase and H. Tanimoto, IEEE Trans. Semicond. Manuf. 26, 355 (2013).

    Article  Google Scholar 

  6. W. Tang, B.-M. Nguyen, R. Chen, and S.A. Dayeh, Semicond. Sci. Technol. 29, 054004 (2014).

    Article  Google Scholar 

  7. T. Futase, T. Kamino, Y. Inaba, and H. Tanimoto, IEEE Trans. Semicond. Manuf. 24, 545 (2011).

    Article  Google Scholar 

  8. S. Kudo, Y. Hirose, T. Yamaguchi, K. Kashihara, K. Maekawa, K. Asai, N. Murata, T. Katayama, K. Asayama, N. Hattori, T. Koyama, and K. Nakamae, IEEE Trans. Semicond. Manuf. 27, 16 (2014).

    Article  Google Scholar 

  9. J. Park, H. Jeon, H. Kim, W. Jang, J. Kim, C. Kang, J. Yuh, and H. Jeon, Jpn. J. Appl. Phys. 53, 095506 (2014).

    Article  Google Scholar 

  10. H.S. Wong, L. Chan, G. Samudra, and Y.C. Yeo, IEEE Electron Device Lett. 28, 703 (2007).

    Article  Google Scholar 

  11. M. Mizuno, T. Yamaguchi, X. Pages, K. Vanormelingen, M. Smits, E. Granneman, M. Fujisawa, and N. Hattori, Jpn. J. Appl. Phys. 54, 04DA09 (2015).

    Article  Google Scholar 

  12. M. Mizuno, T. Yamaguchi, S. Kudoh, Y. Hirose, H. Kimura, J. Tsuchimoto, and N. Hattori, Jpn. J. Appl. Phys. 53, 04EA02 (2014).

    Article  Google Scholar 

  13. P.S.Y. Lim, D.Z. Chi, P.C. Lim, and Y.-C. Yeo, J. Appl. Phys. 111, 073705 (2012).

    Article  Google Scholar 

  14. T. Sonehara, A. Hokazono, H. Akutsu, T. Sasaki, H. Uchida, M. Tomita, S. Kawanaka, S. Inaba, and Y. Toyoshima, IEEE Trans. Electron Device 58, 3778 (2011).

    Article  Google Scholar 

  15. J. Borrel, L. Hutin, O. Rozeau, T. Poiroux, F. Nemouchi, and N. Vinet, in VLSI Technical Symposium (2015), p. T116.

  16. H. Yu, M. Schaekers, E. Rossel, A. Peter, J.-G. Lee, W.-B. Song, S. Demuynck, T. Chiarella, L-A. Ragnarsson, S. Kubicek, J. Everaert, N. Horiguchi, K. Barla, D. Kim, N. Collaert, A.V.-Y. Thean, and K. De Meyer, in IEDM Technical Digest (2015), p. 592.

  17. L. Wei, J. Deng, L.W. Chang, K. Kim, C.T. Chunang, and H.-S.P. Wong, IEEE Trans. Electron Device 56, 312 (2009).

    Article  Google Scholar 

  18. S. Ohmi, IEICE Electron. Exp. 11, 20142006 (2014).

    Article  Google Scholar 

  19. Z. Zhang, S.O. Koswatta, S.W. Bedell, A. Baraskar, M. Guillorn, S.U. Engelmann, Y. Zhu, J. Gonsalves, A. Pyzyna, M. Hopstaken, C. Witt, L. Yang, F. Liu, J. Newbury, W. Song, C. Cabral Jr, M. Lofaro, A.S. Ozcan, M. Raymond, C. Lavoie, J.W. Sleight, K.P. Rodbell, and P.M. Solomon, IEEE Electron Device Lett. 34, 723 (2013).

    Article  Google Scholar 

  20. T. Isogai, H. Tanaka, A. Teramoto, T. Goto, S. Sugawa, and T. Ohmi, in 2009 IEEE ICMTS Conference Proceedings (2009), p. 109.

  21. S. Ohmi and J. Gao, IEICE Electron. Exp. 8, 1710 (2011).

    Article  Google Scholar 

  22. J. Gao, J. Ishikawa, and S. Ohmi, IEICE Electron. Exp. 8, 45 (2011).

    Article  Google Scholar 

  23. J. Gao, J. Ishikawa, and S. Ohmi, IEICE Trans. Electron. E94-C, 775 (2011).

    Article  Google Scholar 

  24. J. Ishikawa, J. Gao, and S. Ohmi, IEICE Electron. Exp. 8, 33 (2011).

    Article  Google Scholar 

  25. Y. Yoshimura and S. Ohmi, Jpn. J. Appl. Phys. 53, 04EB06 (2014).

    Article  Google Scholar 

  26. S. Ohmi, and Y. Masahiro, Japanese Patent Application No. 2015-128774.

  27. S. Ohmi, M. Chen, X. Wu, and Y. Masahiro, IEICE Trans. Electron. E99-C, 510 (2016).

    Article  Google Scholar 

  28. S.-M. Koh, E.Y.-J. Kong, B. Liu, C.-M. Ng, G.S. Samudra, and Y.-C. Yeo, IEEE Trans. Electron Device 58, 3852 (2011).

    Article  Google Scholar 

  29. G. Larrieu, D.A. Yarekha, E. Dubois, N. Breil, and O. Faynot, IEEE Electron Device Lett. 30, 1266 (2009).

    Article  Google Scholar 

  30. S. Ohmi and J. Arima, IEICE Electron. Exp. 10, 20130778 (2013).

    Article  Google Scholar 

  31. N. Stavitski, J.H. Klootwijk, H.W. van Zeijl, A.Y. Kovalgin, and R.A.M. Wolters, IEEE Trans. Semicond. Manuf. 22, 146 (2009).

    Article  Google Scholar 

  32. C.-C. Wu, W.-F. Wu, P.Y. Su, L.J. Chen, and F.-H. Ko, Microelectron. Eng. 84, 1801 (2007).

    Article  Google Scholar 

  33. C. Detavernier, R.L.V. Meirhaeghe, W. Vandervorst, and K. Maex, Microelectron. Eng. 71, 252 (2004).

    Article  Google Scholar 

  34. B.-S. Chiou, H.-S. Lo, and P.-H. Chang, J. Electron. Mater. 17, 397 (1988).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Emeritus H. Ishiwara, Mr. D. Shoji and Mrs. Y. Akimoto of Tokyo Institute of Technology, the late Prof. Emeritus T. Ohmi and Dr. H. Tanaka of Tohoku University for their support and useful discussions for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun-ichiro Ohmi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohmi, Si., Chen, M. & Masahiro, Y. Ultra-low Contact Resistivity of PtHf Silicide Utilizing Dopant Segregation Process. J. Electron. Mater. 45, 6323–6328 (2016). https://doi.org/10.1007/s11664-016-5002-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-5002-7

Keywords

Navigation