Skip to main content
Log in

Effect of Cooling Units on the Performance of an Automotive Exhaust-Based Thermoelectric Generator

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Currently, automotive exhaust-based thermoelectric generators (AETEGs) are a hot topic in energy recovery. In order to investigate the influence of coolant flow rate, coolant flow direction and cooling unit arrangement in the AETEG, a thermoelectric generator (TEG) model and a related test bench are constructed. Water cooling is adopted in this study. Due to the non-uniformity of the surface temperature of the heat source, the coolant flow direction would affect the output performance of the TEG. Changing the volumetric flow rate of coolant can increase the output power of multi-modules connected in series or/and parallel as it can improve the temperature uniformity of the cooling unit. Since the temperature uniformity of the cooling unit has a strong influence on the output power, two cooling units are connected in series or parallel to research the effect of cooling unit arrangements on the maximum output power of the TEG. Experimental and theoretical analyses reveal that the net output power is generally higher with cooling units connected in parallel than cooling units connected in series in the cooling system with two cooling units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Stabler, DARPA/ONR/DOE High Efficiency Thermoelectric Workshop (2002), p. 1.

  2. K.M. Saqr and M.N. Musa, Therm. Sci. 13, 165 (2009).

    Article  Google Scholar 

  3. S. Kumar, S.D. Heister, X.F. Xu, J.R. Salvador, and G.P. Meisner, J. Electron. Mater. 42, 944 (2013).

    Article  Google Scholar 

  4. Y.D. Deng, X. Liu, S. Chen, and N.Q. Tong, J. Electron. Mater. 42, 1634 (2012).

    Article  Google Scholar 

  5. X. Liu, C.G. Yu, S. Chen, Y.P. Wang, and C.Q. Su, J. Electron. Mater. 43, 2218 (2014).

    Article  Google Scholar 

  6. Y.P. Wang, C. Wu, Z.B. Tang, X. Yang, Y.D. Deng, and C.Q. Su, J. Electron. Mater. 44, 1724 (2015).

    Article  Google Scholar 

  7. C. Liu, Y.D. Deng, X.Y. Wang, X. Liu, Y.P. Wang, and C.Q. Su, Appl. Therm. Eng. 108, 916 (2016).

    Article  Google Scholar 

  8. Y.P. Wang, S. Li, Y.D. Deng, and C.Q. Su, J. Electron. Mater. 45, 1792 (2016).

    Article  Google Scholar 

  9. A. Rezania, L.A. Rosendahl, and S.J. Andreasen, Int. Commun. Heat Mass 39, 1054 (2012).

    Article  Google Scholar 

  10. J.W. Qiang, C.G. Yu, Y.D. Deng, C.Q. Su, Y.P. Wang, and X.H. Yuan, J. Electron. Mater. 45, 1679 (2016).

    Article  Google Scholar 

  11. Y.D. Deng, X. Liu, S. Chen, H.B. Xing, and C.Q. Su, J. Electron. Mater. 43, 1815 (2013).

    Article  Google Scholar 

  12. Q. Du, H. Diao, Z. Niu, G. Zhang, G. Shu, and K. Jiao, Energy Convers. Manag. 101, 9 (2015).

    Article  Google Scholar 

  13. W.H. Chen, C.Y. Liao, C.I. Hung, and W.L. Huang, Energy 45, 874 (2012).

    Article  Google Scholar 

  14. C.Q. Su, M. Xu, W.S. Wang, Y.D. Deng, X. Liu, and Z.B. Tang, J. Electron. Mater. 44, 1876 (2015).

    Article  Google Scholar 

  15. Y.D. Deng, S.J. Zheng, C.Q. Su, X.H. Yuan, C.G. Yu, and Y.P. Wang, J. Electron. Mater. 45, 1 (2015).

    Google Scholar 

  16. Y.P. Wang, S. Li, Y.F. Zhang, X. Yang, Y.D. Deng, and C.Q. Su, Energy Convers. Manag. 126, 266 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by Grant No. 2013CB632505 from the National Basic Research Program of China (973 Program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. P. Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, C.Q., Zhu, D.C., Deng, Y.D. et al. Effect of Cooling Units on the Performance of an Automotive Exhaust-Based Thermoelectric Generator. J. Electron. Mater. 46, 2822–2831 (2017). https://doi.org/10.1007/s11664-016-4989-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4989-0

Keywords

Navigation