Skip to main content
Log in

Optical and Electrical Study of Defects in GaN In Situ Doped with Eu3+ Ion Grown by OMVPE

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A silicon/europium-codoped GaN epilayer (GaN:Si,Eu3+) and a control sample (GaN:Si) have been investigated using optical spectroscopy and various deep-level transient spectroscopy (DLTS) techniques. Three electron traps in GaN:Si,Eu3+, as well as one electron trap and one hole trap in GaN:Si, were observed in the temperature range from 35 K to 400 K by DLTS. High-resolution Laplace DLTS revealed multiple, closely spaced defect energy levels associated with trap B of GaN:Si,Eu3+ and trap D of GaN:Si, respectively. Minority-carrier transient spectroscopy (MCTS) measurements revealed a shallow hole trap in GaN:Si,Eu3+, whose presence was validated using the rare-earth-structured isovalent (RESI) hole trap model. The identified DLTS energy traps were compared with other energy traps reported in literature. Also, the energy transfer mechanism between the GaN host and Eu3+ ion was considered and discussed using the combination of electrical and optical studies reported here and in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Vurgaftman and J.R. Meyer, J. Appl. Phys. 94, 3675 (2003).

    Article  Google Scholar 

  2. K. O’Donnell and V. Dierolf, Rare-Earth Doped III-Nitrides for Optoelectronic and Spintronic Applications, 1st ed. (Dordrecht: Springer, 2010), p. 189.

    Book  Google Scholar 

  3. Y. Jiang, Y. Li, Y. Li, Z. Deng, T. Lu, Z. Ma, P. Zuo, L. Dai, L. Wang, H. Jia, W. Wang, J. Zhou, W. Liu, and H. Chen, Sci. Rep. 5, 10883 (2015).

    Article  Google Scholar 

  4. M.K. Horton, S. Rhode, S.-L. Sahonta, M.J. Kappers, S.J. Haigh, T.J. Pennycook, C.J. Humphreys, R.O. Dusane, and M.A. Moram, Nano Lett. 15, 923 (2015).

    Article  Google Scholar 

  5. A. Nishikawa, T. Kawasaki, N. Furukawa, Y. Terai, and Y. Fujiwara, Phys. Status Solidi 207, 1397 (2010).

    Article  Google Scholar 

  6. Y. Fujiwara and V. Dierolf, Jpn. J. Appl. Phys. 53, 05FA13 (2014).

    Article  Google Scholar 

  7. K.P. O’Donnell, P.R. Edwards, M.J. Kappers, K. Lorenz, E. Alves, and M. Boćkowski, Phys. Status Solidi C 11, 662 (2014).

    Article  Google Scholar 

  8. M. Ishii, A. Koizumi, and Y. Fujiwara, Appl. Phys. Lett. 105, 171903 (2014).

    Article  Google Scholar 

  9. W.D.A.M. de Boer, C. McGonigle, T. Gregorkiewicz, Y. Fujiwara, S. Tanabe, and P. Stallinga, Sci. Rep. 4, 5235 (2014).

    Google Scholar 

  10. M. Ishii, A. Koizumi, and Y. Fujiwara, J. Appl. Phys. 117, 155307 (2015).

    Article  Google Scholar 

  11. A. Koizumi, K. Kawabata, D. Lee, A. Nishikawa, Y. Terai, H. Ofuchi, T. Honma, and Y. Fujiwara, Opt. Mater. 41, 75 (2015).

    Article  Google Scholar 

  12. W. Jadwisienczak, K. Wisniewski, M. Spencer, T. Thomas, and D. Ingram, Radiat. Meas. 45, 500 (2010).

    Article  Google Scholar 

  13. Z. Fleischman, C. Munasinghe, A.J. Steckl, A. Wakahara, J. Zavada, and V. Dierolf, Appl. Phys. B Lasers Opt. 97, 607 (2009).

    Article  Google Scholar 

  14. M. Nakayama, S. Nakamura, H. Takeuchi, A. Koizumi, and Y. Fujiwara, Appl. Phys. Lett. 106, 012102 (2015).

    Article  Google Scholar 

  15. B. Mitchell, J. Poplawsky, D. Lee, A. Koizumi, Y. Fujiwara, and V. Dierolf, J. Appl. Phys. 115, 4501 (2014).

    Article  Google Scholar 

  16. S. Sanna, W. Schmidt, T. Frauenheim, and U. Gerstmann, Phys. Rev. B 80, 4120 (2009).

    Google Scholar 

  17. J. Poplawsky and V. Dierolf, Microsc. Microanal. 18, 1263 (2012).

    Article  Google Scholar 

  18. W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965).

    Article  Google Scholar 

  19. J.D. Poplawsky, A. Nishikawa, and Y. Fujiwara, Opt. Express 21, 1263 (2013).

    Article  Google Scholar 

  20. B. Mitchell, D. Lee, D. Lee, A. Koizumi, J. Poplawsky, Y. Fujiwara, and V. Dierolf, Phys. Rev. B 88, 1 (2013).

    Google Scholar 

  21. J. Wang, A. Koizumi, Y. Fujiwara, and W.M. Jadwisienczak, J. Electron. Mater. 45, 2001 (2016).

    Article  Google Scholar 

  22. J.-L. Lee, J.K. Kim, J.W. Lee, Y.J. Park, and T. Kim, Phys. Status Solidi 176, 763 (1999).

    Article  Google Scholar 

  23. D.V. Lang, J. Appl. Phys. 45, 3023 (1974).

    Article  Google Scholar 

  24. L. Dobaczewski, A.R. Peaker, and K. Bonde Nielsen. J. Appl. Phys. 96, 4689 (2004).

    Article  Google Scholar 

  25. B. Hamliton, A.R. Peaker, and D.R. Wight, J. Appl. Phys. 50, 6373 (1979).

    Article  Google Scholar 

  26. H. Morkoç, Handbook of Nitride Semiconductors and Devices Vol. 2: Electronic and Optical Processes in Nitrides (Weinheim: Wiley-VCH, 2008), p. 170.

    Book  Google Scholar 

  27. M.A. Reshchikov and H. Morkoç, J. Appl. Phys. 97, 61301 (2005)

  28. B. Monemar, H. Search, C. Journals, A. Contact, M. Iopscience, and I.P. Address, J. Phys.: Condens. Matter 13, 7011 (2001).

    Google Scholar 

  29. M.A. Reshchikov, Phys. Status Solidi (c) 8, 2136 (2011).

    Article  Google Scholar 

  30. H.J. Lozykowski, Phys. Rev. B 48, 17758 (1993).

    Article  Google Scholar 

  31. H.J. Lozykowski and W.M. Jadwisienczak, Phys. Status Solidi (b) 244, 2109 (2007).

    Article  Google Scholar 

  32. J.-S. Filhol, R. Jones, M.J. Shaw, and P.R. Briddon, Appl. Phys. Lett. 84, 2841 (2004).

    Article  Google Scholar 

  33. P.J. Janse van Rensburg, F.D. Auret, V.S. Matias, and A. Vantomme, Phys. B 404, 4411 (2009).

    Article  Google Scholar 

  34. D. Lee, R. Wakamatsu, A. Koizumi, Y. Terai, J.D. Poplawsky, V. Dierolf, and Y. Fujiwara, Appl. Phys. Lett. 102, 141904 (2013).

    Article  Google Scholar 

  35. R. Wakamatsu, D. Lee, A. Koizumi, V. Dierolf, Y. Terai, and Y. Fujiwara, Jpn. J. Appl. Phys. 52, 2 (2013).

    Article  Google Scholar 

  36. D. Haase, M. Schmid, W. Kürner, A. Dörnen, V. Härle, F. Scholz, M. Burkard, and H. Schweizer, Appl. Phys. Lett. 69, 2525 (1996).

    Article  Google Scholar 

  37. H.K. Cho, C.S. Kim, and C.H. Hong, J. Appl. Phys. 94, 1485 (2003).

    Article  Google Scholar 

  38. A. Armstrong, A.R. Arehart, and S.A. Ringel, J. Appl. Phys. 97, 083529 (2005).

    Article  Google Scholar 

  39. F.D. Auret, W.E. Meyer, L. Wu, M. Hayes, M.J. Legodi, B. Beaumont, and P. Gibart, Phys. Status Solidi (a) 201, 2271 (2004).

    Article  Google Scholar 

  40. P.B. Shah, R.H. Dedhia, R.P. Tompkins, E.A. Viveiros, and K.A. Jones, Solid State Electron. 78, 121 (2012).

    Article  Google Scholar 

  41. Y. Tokuda, Y. Yamada, T. Shibata, S. Yamaguchi, H. Ueda, T. Uesugi, and T. Kachi, Phys. Status Solidi (c) 8, 2239 (2011).

    Article  Google Scholar 

  42. Y. Tokuda, CS ManTech Conference, 19–22 May, Denver, CO (2014). http://gaasmantech.com/Digests/2014/papers/ 007.pdf. Accessed 09 Sept 2016.

  43. K. Lorenz, E. Alves, I.S. Roqan, K.P. O’Donnell, A. Nishikawa, Y. Fujiwara, and M. Boćkowski, Appl. Phys. Lett. 97, 111911 (2010).

    Article  Google Scholar 

  44. F.D. Auret, W.E. Meyer, M. Diale, P.J.J. Van Rensburg, S.F. Song, K. Temst, and A. Vantomme, Mater. Sci. Forum 679–680, 804 (2011).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingzhou Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Koizumi, A., Fujiwara, Y. et al. Optical and Electrical Study of Defects in GaN In Situ Doped with Eu3+ Ion Grown by OMVPE. J. Electron. Mater. 45, 6355–6362 (2016). https://doi.org/10.1007/s11664-016-4983-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4983-6

Keywords

Navigation