Skip to main content
Log in

Thermodynamic Properties of Gapped Graphene in the Presence of a Transverse Magnetic Field by Considering Holstein Phonons

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Using the Holstein model, the thermodynamic properties of gapped graphene in the presence of electron–phonon (e–ph) coupling and a transverse magnetic field are investigated. In particular, we have obtained density of states (DOS), electronic heat capacity (EHC) and magnetic susceptibility (MS) of graphene, for which carbon atoms are substituted by boron and nitride atoms in the presence of Holstein phonons and a transverse magnetic field within the Green’s function approach in order to investigate the dynamic of Dirac fermions. To find the electronic self-energy due to e–ph coupling and the substituted foreign atoms, the self-consistent second order perturbation theory has been implemented. The band gap decreases with magnetic field and e–ph coupling. Also splitting of the quantum states (energy levels) due to the magnetic field is observed as double peaks in DOS (Van Hove singularities). As a remarkable result, EHC and MS are decreased due to the increase of scattering rate between electrons, an applied magnetic field, and e–ph coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004)

    Article  Google Scholar 

  2. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, and A.A. Firsov, Nature 438, 197 (2005)

    Article  Google Scholar 

  3. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, and A.K. Geim, Proc. Natl. Acad. Sci. 102, 10451 (2005)

    Article  Google Scholar 

  4. Y. Zhang, Y. Tan, H.L. Stormer, and P. Kim, Nature 438, 201 (2005)

    Article  Google Scholar 

  5. A.K. Geim, Science 324, 1530 (2009)

    Article  Google Scholar 

  6. H. Rezania and M. Yarmohammadi, Opt. Mater. 57, 8 (2016)

    Article  Google Scholar 

  7. H. Rezania and M. Yarmohammadi, Indian J. Phys. 90, 811 (2016)

    Article  Google Scholar 

  8. G.W. Semenoff, Phys. Rev. Lett. 53, 2449 (1984)

    Article  Google Scholar 

  9. M.I. Katsnelson, K.S. Novoselov, and A.K. Geim, Nat. Phys. 2, 620 (2006)

    Article  Google Scholar 

  10. M. Yarmohammadi and M. Zareyan, Chin. Phys. B 6, 068105 (2016)

    Article  Google Scholar 

  11. Y. Lin, K.A. Jenkins, A. Valdes-Garcia, J.P. Small, D.B. Farmer, and P. Avouris, Nano Lett. 9, 422 (2009)

    Article  Google Scholar 

  12. J. Kedzierski, P. Hsu, P. Healey, P.W. Wyatt, C.L. Keast, M. Sprinkle, C. Berger, and W.A. de Heer, I.E.E.E. Trans, Electron Devices. 55, 2078 (2008)

    Article  Google Scholar 

  13. H. Rezania and M. Yarmohammadi, Superlattices Microstruct. 89, 15 (2016)

    Article  Google Scholar 

  14. H. Rezania and Z. Aghaii Manesh, Commun. Theor. Phys. 64, 583 (2015)

    Article  Google Scholar 

  15. L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z.F. Wang, K. Storr, L. Balicas, F. Liu, and P.M. Ajayan, Nat. Mater. 9, 430 (2010)

    Article  Google Scholar 

  16. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 247 (2011)

    Article  Google Scholar 

  17. T.K. Pauli, P. Bhattacharya, and D.N. Bose, Appl. Phys. Lett. 56, 2648 (1990)

    Article  Google Scholar 

  18. C.H. Jin, F. Lin, K. Suenaga, and S. Iijima, Phys. Rev. Lett. 102, 195505 (2009)

    Article  Google Scholar 

  19. A. Lherbier, X. Blase, Y. Niquet, F. Triozon, and S. Roche, Phys. Rev. Lett. 101, 036808 (2008)

    Article  Google Scholar 

  20. Y. Zhang and S. Das Sarma, Phys. Rev. Lett. 96, 196602 (2006)

    Article  Google Scholar 

  21. A.L. Subasi and B. Tanatar, Phys. Rev. B. 78, 155304 (2008)

    Article  Google Scholar 

  22. A.L. Subasi and B. Tanatar, Solid State Commun. 144, 521 (2007)

    Article  Google Scholar 

  23. S. De Palo, M. Botti, S. Moroni, and G. Senantore, Phys. Rev. Lett. 94, 226405 (2005)

    Article  Google Scholar 

  24. R. Chegel, S. Behzad, and E. Ahmadi, Solid State Sci. 14, 456 (2012)

    Article  Google Scholar 

  25. H. Rezania and Z. Aghaiimanesh, Phys. E 73, 100 (2015)

    Article  Google Scholar 

  26. W. Xiaoguang, F.M. Peeters, and J.T. Devreese, Phys. Rev. B 31, 3420 (1985)

    Article  Google Scholar 

  27. S. Das Sarma and B.A. Mason, Ann. Phys. (N.Y.) 163, 78 (1985)

    Article  Google Scholar 

  28. A.K. Sood, J. Menendez, M. Cardona, and K. Ploog, Phys. Rev. Lett. 54, 2111 (1985)

    Article  Google Scholar 

  29. C. TralleroGiner, F. Garca-Moliner, V.R. Velasco, and M. Cardona, Phys. Rev. B 45, 11944 (1992)

    Article  Google Scholar 

  30. A.J. Shields, M. Cardona, and K. Eberl, Phys. Rev. Lett. 72, 412 (1994)

    Article  Google Scholar 

  31. W.P. Su, J.R. Schrieffer, and A.J. Heeger, Phys. Rev. Lett. 42, 1698 (1979)

    Article  Google Scholar 

  32. M. Yarmohammadi, AIP Advances 6, 085008 (2016)

    Article  Google Scholar 

  33. T. Holstein, Ann. Phys. 8, 343 (1959)

    Article  Google Scholar 

  34. S. Piscanec, M. Lazzeri, F. Mauri, A.C. Ferrari, and J. Robertson, Phys. Rev. Lett. 93, 185503 (2004)

    Article  Google Scholar 

  35. S. Piscanec, M. Lazzeri, J. Robertson, A.C. Ferrari , and F. Mauri, Phys. Rev. B 75, 035427 (2007)

    Article  Google Scholar 

  36. S. Piscanec, M. Lazzeri, C. Casiraghi, K.S. Novoselov, A.K. Geim, A.C. Ferrari , and F. Mauri, Nat. Mater. 6, 198 (2007)

    Article  Google Scholar 

  37. H. Rezania and M. Yarmohammadi, Phys. E 75, 125 (2016)

    Article  Google Scholar 

  38. L. Wirtz and A. Rubio, Solid State Commun. 131, 141 (2004)

    Article  Google Scholar 

  39. T. Stauber and N.M.R. Peres, J. Phys. Condens. Matter. 20, 055002 (2008)

    Article  Google Scholar 

  40. G.D. Mahan, Many Particle Physics (Plenum Press: New York, 1993)

    Google Scholar 

  41. H. Rezania and M. Yarmohammadi, AIP Adv. 6, 075121 (2016)

    Article  Google Scholar 

  42. M. Yarmohammadi, Solid State Commun. 234, 14 (2016)

    Article  Google Scholar 

  43. M. Yarmohammadi, J. Magn. Magn. Mater. 419, 240 (2016)

    Article  Google Scholar 

  44. E. Lotfi, H. Rezania, B. Arghavaninia, and M. Yarmohammadi, Chin. Phys. B 25, 076102 (2016)

    Article  Google Scholar 

  45. A. Mogulkoc, M. Modarresi, and B.S. Kandemir, Eur. Phys. J. B 88, 49 (2015)

    Article  Google Scholar 

  46. H. Mousavi and J. Khodadadi, Appl. Phys. A 122, 14 (2016)

    Article  Google Scholar 

  47. G. Grosso and G.P. Parravicini, Solid State Physics, 2nd edn. (Academic Press: New York, 2014)

    Google Scholar 

  48. C. Kittel, Introduction to Solid State Physics, 8th edn. (New York: Wiley, J. B 72, 1 2009), 2004)

  49. M. Yarmohammadi, J. Magn. Magn. Mater. 417, 208 (2016)

    Article  Google Scholar 

  50. W. Nolthing and A. Ramakanth, Quantum Theory of Magnetism (Springer: New York, 2009)

    Book  Google Scholar 

  51. H. Mousavi and J. Khodadadi, Superlattices Microstruct. 88, 434 (2015)

    Article  Google Scholar 

  52. R. Saito, G. Dresselhaus, and M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press: London, 1998)

    Book  Google Scholar 

  53. A. Mogulkoc, Phys. B 473, 20 (2015)

    Article  Google Scholar 

  54. R.K. Pathria, Statistical Mechanics (Oxford Press: London, 1997)

    Google Scholar 

  55. A. Mogulkoc, M. Modarresi, B.S. Kandemir, M.R. Roknabadi, N. Shahtahmasebi, and M. Behdani, Phys. B 446, 85 (2014)

    Article  Google Scholar 

  56. M. Modarresi, A. Mogulkoc, M.R. Roknabadi, and N. Shahtahmasebi, Phys. E 66, 303 (2015)

    Article  Google Scholar 

  57. H. Mousavi and J. Khodadadi, Phys. E 50, 11 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Yarmohammadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yarmohammadi, M. Thermodynamic Properties of Gapped Graphene in the Presence of a Transverse Magnetic Field by Considering Holstein Phonons. J. Electron. Mater. 46, 747–757 (2017). https://doi.org/10.1007/s11664-016-4963-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4963-x

Keywords

Navigation