Strain-Induced Enhancement of Eu3+ Emission in Red Phosphor NaMgPO4:Eu3+, Al3+

Abstract

A series of (NaMgPO4)0.98−x : \({\hbox{Eu}}_{0.02}^{3 + }\), \({\hbox{Al}}_{x}^{3 + }\) phosphors were prepared by the solid-state method. X-ray powder diffraction results confirm that the samples contain mixture phases of crystals. The doped effect of Al3+ on the photoluminescence properties of (NaMgPO4)0.98−x : \({\hbox{Eu}}_{0.02}^{3 + }\), \({\hbox{Al}}_{x}^{3 + }\) phosphors is discussed. The results indicate that two dependent curves of emission relative intensity and strain on Al3+ doping concentration are all Gaussian curves, and a high correlation is observed between emission relative intensity of Eu3+ and strain caused by Al3+. In other words, emission relative intensity of Eu3+ is enhanced with the increase of the strain. The enhanced mechanism of the strain is discussed. In addition, (NaMgPO4)0.98−x : \({\hbox{Eu}}_{0.02}^{3 + }\), \({\hbox{Al}}_{x}^{3 + }\) phosphors are electric dipole-dominated transition red phosphors. The optimal molar concentration of Al3+ for the samples is 9%, which (NaMgPO4)0.89: \({\hbox{Eu}}_{0.02}^{3 + }\), \({\hbox{Al}}_{0.09}^{3 + }\) is a potential candidate as the red-emitting phosphor for ultraviolet-based white light-emitting diodes.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    R.J. Xie, N. Hirosaki, M. Mitomo, K. Sakuma, and N. Kimura, Appl. Phys. Lett. 89, 241103 (2006).

    Article  Google Scholar 

  2. 2.

    B. Han, J. Zhang, P.J. Li, J.L. Li, Y. Bian, and H.Z. Shi, J. Electron. Mater. 44, 1028 (2015).

    Article  Google Scholar 

  3. 3.

    L.L. Li, Z.H. Leng, W.W. Zi, and S.C. Gan, J. Electron. Mater. 43, 2588 (2014).

    Article  Google Scholar 

  4. 4.

    S. Singh, S.P. Khatkar, R. Arora, D. Sangwan, A. Khatkar, and V.B. Taxak, J. Electron. Mater. 43, 1174 (2014).

    Article  Google Scholar 

  5. 5.

    S.J. Zhang and Y.G. Yang, J. Electron. Mater. 43, 389 (2014).

    Article  Google Scholar 

  6. 6.

    S. Thakur and A.K. Gathania, J. Electron. Mater. 44, 3444 (2015).

    Article  Google Scholar 

  7. 7.

    S. Thakur and A.K. Gathania, J. Fluoresc. 25, 657 (2015).

    Article  Google Scholar 

  8. 8.

    S. Thakur and A.K. Gathania, Int. J. Lumin. Appl. 4, 53 (2014).

    Google Scholar 

  9. 9.

    Q.W. Long, Y. Xia. Y.H. Huang, S. Liao, Y. Gao, J.H. Huang, J.Q. Liang, and J.J. Cai, Mater. Lett. 145, 359 (2015).

  10. 10.

    Q.W. Long, Y. Gao, Y.H. Huang, S. Liao, B.L. Song, W.W. Wu, and J.J. Cai, Mater. Lett. 160, 436 (2015).

    Article  Google Scholar 

  11. 11.

    Y. Xia, Y.H. Huang, Q.W. Long, S. Liao, Y. Gao, J.Q. Liang, and J.J. Cai, Ceram. Int. 41, 5525 (2015).

    Article  Google Scholar 

  12. 12.

    J.A. Dorman, J.H. Choi, G. Kuzmanich, and J.P. Chang, J. Phys. Chem. C 116, 12854 (2012).

    Article  Google Scholar 

  13. 13.

    Y. Jin, W. Lu, J.H. Zhang, Z.D. Hao, and X. Zhang, J. Nanosci. Nanotech. 14, 3683 (2014).

    Article  Google Scholar 

  14. 14.

    B.R. Judd, Phys. Rev. 127, 750 (1962).

    Article  Google Scholar 

  15. 15.

    G.S. Ofelt, J. Chem. Phys. 37, 511 (1962).

    Article  Google Scholar 

  16. 16.

    C. Jin, H.X. Ma, Q.B. Liu, X. Li, and P.F. Liu, Spectrochim. Acta, Part A 122, 767 (2014).

    Article  Google Scholar 

  17. 17.

    Z.F. Mu, Y.H. Hu, L. Chen, and X.J. Wang, J. Electrochem. Soc. 158, J287 (2011).

    Article  Google Scholar 

  18. 18.

    H.D. Luo, J. Liu, X. Zheng, L.X. Han, K.X. Ren, and X.B. Yu, J. Mater. Chem. 22, 15887 (2012).

    Article  Google Scholar 

  19. 19.

    M. Nolan, J. Phys. Chem. 115, 6671 (2011).

    Google Scholar 

  20. 20.

    Z. Antic, V. Dordevic, M.D. Dramicanin, and T. Thundat, Ceram. Int. 42, 3899 (2016).

    Article  Google Scholar 

  21. 21.

    X.H. Gao, B.H. Zhou, and R.F. Yuan, Environ. Eng. Res. 20, 329 (2015).

    Article  Google Scholar 

  22. 22.

    L.L. Noto, O.M. Ntwaeaborwa, M.Y.A. Yagoub, and H.C. Swart, Mater. Res. Bull. 70, 545 (2015).

    Article  Google Scholar 

  23. 23.

    A.Y. Mehandzhiyski, E. Riccardi, T.S. van Erp, T.T. Trinh, and B.A. Grimes, J. Phys. Chem. B 119, 10710 (2015).

    Article  Google Scholar 

  24. 24.

    Y. Zhou, X.H. Wu, W.W. Wu, X.S. Huang, W. Chen, Y.L. Tian, and D. He, Mater. Sci. Semicond. Process. 41, 162 (2016).

    Article  Google Scholar 

  25. 25.

    G. Feng, W.H. Jiang, Y.B. Chen, and R.J. Zeng, Mater. Lett. 65, 110 (2011).

    Article  Google Scholar 

  26. 26.

    A.K. Zak, W.H.A. Majid, M.E. Abrishami, and R. Yousefi, Solid State Sci. 13, 251 (2011).

    Article  Google Scholar 

  27. 27.

    N.R. Yogamalar and A.C. Bose, J. Solid State Chem. 184, 12 (2011).

    Article  Google Scholar 

  28. 28.

    V.D. Mote, Y. Purushotham, and B.N. Dole, J. Theor. Appl. Phys. 6, 2251 (2012).

    Article  Google Scholar 

  29. 29.

    T. Kalpana, M.G. Brik, V. Sudarsan, P. Nareshf, V. Ravi Kumar, I.V. Kityk, and N. Veeraiah, J. Non-Cryst. Solids 419, 75 (2015).

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of China (Grant No. 21561003, 21661006), and the Guangxi Scientific Foundation of China (Grant No. 2012GXNSFAA053019).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sen Liao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 245 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Long, Q., Nong, R. et al. Strain-Induced Enhancement of Eu3+ Emission in Red Phosphor NaMgPO4:Eu3+, Al3+ . Journal of Elec Materi 46, 911–916 (2017). https://doi.org/10.1007/s11664-016-4950-2

Download citation

Keywords

  • Inorganic compounds
  • optical materials
  • chemical synthesis
  • luminescence
  • optical properties