Journal of Electronic Materials

, Volume 46, Issue 5, pp 2717–2723 | Cite as

Effects of K-Doping on Thermoelectric Properties of Bi1−x K x CuOTe

  • Tae-Ho An
  • Young Soo Lim
  • Won-Seon Seo
  • Cheol-Hee Park
  • Mi Duk Yoo
  • Chan Park
  • Chang Hoon Lee
  • Ji Hoon Shim


The effects of K-doping on the thermoelectric properties of Bi1−x K x CuOTe (x = 0 to 0.08) have been investigated. The compounds were synthesized by a one-step solid-state reaction method and consolidated by a spark plasma sintering process. As the amount of K-doping was increased, the electrical and thermal conductivities increased while the Seebeck coefficient decreased due to increasing hole concentration. A ZT value of 0.69 was obtained for the compound K0.01Bi0.99CuOTe at 700 K, to the best of our knowledge the highest value reported for this material system. The origin of this enhanced ZT is discussed in terms of the density of states effective mass estimated by a single parabolic band model and electronic structures calculated based on density functional theory.


Thermoelectric BiCuOTe K-doping density of states (DOS) effective mass 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research was supported by the Mid-career Researcher Program (2015R1A2A2A01005929) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology, Republic of Korea and also by the Power Generation & Electricity Delivery (2011-1020400090) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) funded by the Ministry of Knowledge Economy (MKE).


  1. 1.
    D.M. Rowe, CRC Handbook of Thermoelectrics (Boca Raton: CRC, 1995).CrossRefGoogle Scholar
  2. 2.
    H.J. Goldsmid, Thermoelectric Refrigeration (New York: Plenum, 1964).CrossRefGoogle Scholar
  3. 3.
    T.M. Tritt, Semiconductors and Semimetals, Recent Trends in Thermoelectric Materials Research: Part One to Three (San Diego: Academic, 2001).Google Scholar
  4. 4.
    A.F. Ioffe, Semiconductor Thermoelements, and Thermoelectric Cooling (London: Infosearch, 1957).Google Scholar
  5. 5.
    G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).CrossRefGoogle Scholar
  6. 6.
    Y. Kinemuchi, C. Ito, H. Kaga, T. Aoki, and K. Watari, J. Mater. Res. 7, 1942 (2007).CrossRefGoogle Scholar
  7. 7.
    Z.H. Dughaish, Phys. B 322, 205 (2002).CrossRefGoogle Scholar
  8. 8.
    A.F. Ioffe, Semiconductor; Thermoelements and Thermoelectric Cooling (London: Infosearch Limited, 1957).Google Scholar
  9. 9.
    J.P. Heremans, B. Wiendlocha, and A.M. Chamoire, Energy Environ. Sci. 5, 5510 (2012).CrossRefGoogle Scholar
  10. 10.
    L.D. Zhao, D. Berardan, Y.L. Pei, C. Byl, L. Pinsard-Gaudart, and N. Dragoe, Appl. Phys. Lett. 97, 092118 (2010).CrossRefGoogle Scholar
  11. 11.
    Y. Liu, L.D. Zhao, Y. Liu, J. Lan, W. Xu, F. Li, B.P. Zhang, D. Berardan, N. Dragoe, Y.H. Lin, C.W. Nan, J.F. Li, and H. Zhu, J. Am. Chem. Soc. 133, 20112 (2011).CrossRefGoogle Scholar
  12. 12.
    F. Li, J.-F. Li, L.-D. Zhao, K. Xiang, Y. Liu, B.-P. Zhang, Y.-H. Lin, C.-W. Nan, and H.-M. Zhu, Energy Environ. Sci. 5, 7188 (2012).CrossRefGoogle Scholar
  13. 13.
    Y.L. Pei, J. He, J.F. Li, F. Li, Q. Liu, W. Pan, C. Barreteau, D. Berardan, N. Dragoe, and L.D. Zhao, NPG Asia Mater. 5, e47 (2013).CrossRefGoogle Scholar
  14. 14.
    J. Li, J. Sui, Y.L. Pei, C. Barreteau, D. Berardan, N. Dragoe, W. Cai, J.Q. He, and L.-D. Zhao, Energy Environ. Sci. 5, 8543 (2012).CrossRefGoogle Scholar
  15. 15.
    L.-D. Zhao, J.Q. He, D. Berardan, Y.H. Lin, J.-F. Li, C.-W. Nan, and N. Dragoe, Energy Environ. Sci. 7, 2900 (2014).CrossRefGoogle Scholar
  16. 16.
    H. Hiramatsu, H. Yanagi, T. Kamiya, K. Ueda, M. Hirano, and H. Hosono, Chem. Mater. 20, 326 (2008).CrossRefGoogle Scholar
  17. 17.
    J.L. Lan, B. Zhan, Y.C. Liu, B. Zheng, Y. Liu, Y.H. Lin, and C.W. Nan, Appl. Phys. Lett. 102, 123905 (2013).CrossRefGoogle Scholar
  18. 18.
    J. Li, J. Sui, C. Barreteau, D. Berardan, N. Dragoe, W. Cai, Y. Pei, and L.-D. Zhao, J. Alloys Compd. 551, 649 (2013).CrossRefGoogle Scholar
  19. 19.
    F. Li, T.-R. Wei, F. Kang, and J.-F. Li, J. Mater. Chem. A 1, 11942 (2013).CrossRefGoogle Scholar
  20. 20.
    J. Sui, J. Li, J. He, Y.L. Pei, D. Berardan, H. Wu, N. Dragoe, W. Cai, and L.D. Zhao, Energy Environ. Sci. 6, 2916 (2013).CrossRefGoogle Scholar
  21. 21.
    L. Pan, D. Berardan, L. Zhao, C. Barreteau, and N. Dragoe, Appl. Phys. Lett. 102, 023902 (2013).CrossRefGoogle Scholar
  22. 22.
    S.D.N. Luu and P. Vaqueiro, J. Mater. Chem. A 1, 12270 (2013).CrossRefGoogle Scholar
  23. 23.
    J.L. Lan, Y.C. Liu, B. Zhan, Y.H. Lin, B. Zhang, X. Yuan, W. Zhang, W. Xu, and C.W. Nan, Adv. Mater. 25, 5086 (2013).CrossRefGoogle Scholar
  24. 24.
    J. Li, J. Sui, Y. Pei, X. Meng, D. Berardan, N. Dragoe, W. Cai, and L.-D. Zhao, J. Mater. Chem. A 2, 4903 (2014).CrossRefGoogle Scholar
  25. 25.
    D.S. Lee, T.-H. An, M. Jeong, H.-S. Choi, Y.S. Lim, W.-S. Seo, C.-H. Park, C. Park, and H.-H. Park, Appl. Phys. Lett. 103, 232110 (2013).CrossRefGoogle Scholar
  26. 26.
    Z. Li, C. Xiao, S.J. Fan, Y. Deng, W.S. Zhang, B.J. Ye, and Y. Xie, J. Am. Chem. Soc. 137, 6587 (2015).CrossRefGoogle Scholar
  27. 27.
    C. Barreteau, D. Bérardan, L.D. Zhao, and N. Dragoe, J. Mater. Chem. A 1, 2921 (2013).CrossRefGoogle Scholar
  28. 28.
    P. Vaqueiro, G. Guélou, M. Stec, E. Guilmeau, and A.V. Powell, J. Mater. Chem. A 1, 520 (2013).CrossRefGoogle Scholar
  29. 29.
    T.-H. An, Y.S. Lim, H.-S. Choi, W.-S. Seo, C.-H. Park, G.-R. Kim, C. Park, C.H. Lee, and J.H. Shim, J. Mater. Chem. A 2, 19759 (2014).CrossRefGoogle Scholar
  30. 30.
    P.E. Blöchl, Phys. Rev. B 50, 17953 (1994).CrossRefGoogle Scholar
  31. 31.
    G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).CrossRefGoogle Scholar
  32. 32.
    G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).CrossRefGoogle Scholar
  33. 33.
    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
  34. 34.
    D. Shannon, Acta Crystallogr. 32, 751 (1976).CrossRefGoogle Scholar
  35. 35.
    C. Barreteau, D. Berardan, E. Amzallag, L.D. Zhao, and N. Dragoe, Chem. Mater. 34, 3168 (2012).CrossRefGoogle Scholar
  36. 36.
    H. Brooks, Advances in Electronics and Electron Physics (New York: Academic, 1955).Google Scholar
  37. 37.
    P.P. Debye and E.R. Conwell, Phys. Rev. 93, 693 (1954).CrossRefGoogle Scholar
  38. 38.
    A. Togo, F. Oba, I. Tanaka, and K. Tatsumi, Phys. Rev. B 74, 195128 (2006).CrossRefGoogle Scholar
  39. 39.
    S.-H. Wei and A. Zunger, Phys. Rev. B 55, 13605 (1997).CrossRefGoogle Scholar
  40. 40.
    U.V. Waghmare, N.A. Spaldin, H.C. Kandpal, and R. Seshadri, Phys. Rev. B 67, 125111 (2003).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  • Tae-Ho An
    • 1
  • Young Soo Lim
    • 2
  • Won-Seon Seo
    • 3
  • Cheol-Hee Park
    • 4
  • Mi Duk Yoo
    • 1
  • Chan Park
    • 1
  • Chang Hoon Lee
    • 5
  • Ji Hoon Shim
    • 5
    • 6
  1. 1.Department of Materials Science and EngineeringSeoul National UniversitySeoulRepublic of Korea
  2. 2.Department of Materials System EngineeringPukyong National UniversityBusanRepublic of Korea
  3. 3.Energy and Environmental DivisionKorea Institute of Ceramic Engineering and TechnologyJinjuRepublic of Korea
  4. 4.LG Chem/Research ParkDaejeonRepublic of Korea
  5. 5.Department of ChemistryPohang University of Science and TechnologyPohangRepublic of Korea
  6. 6.Divisions of Advanced Nuclear EngineeringPohang University of Science and TechnologyPohangRepublic of Korea

Personalised recommendations