Skip to main content
Log in

Green Synthesis of Ag-Cu Nanoalloys Using Opuntia ficus-indica

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Bimetallic Ag/Cu nanoparticles have been obtained by green synthesis using Opuntia ficus-indica plant extract. Two synthesis methods were applied to obtain nanoparticles with core–shell and Janus morphologies by reversing the order of precursors. Transmission electronic microscopy revealed size of 10 nm and 20 nm for the core–shell and Janus nanoparticles, respectively. Other small particles with size of up to 2 nm were also observed. Absorption bands attributed to surface plasmon resonance were detected at 440 nm and 500 nm for the core–shell and Janus nanoparticles, respectively. Density functional theory predicted a breathing mode type (BMT) located at low wavenumber due to small, low-energy clusters of (AgCu) n with n = 2 to 9, showing a certain correlation with the experimental one (at 220 cm−1). The dependence of the BMT on the number of atoms constituting the cluster is also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.R. Hirsch, R.J. Stafford, J.A. Bankson, S.R. Sershen, B. Rivera, R.E. Price, J.D. Hazle, N.J. Halas, and J.L. West, Proc. Natl. Acad. Sci. 100, 13549 (2003).

    Article  Google Scholar 

  2. B. Schrick, J.L. Blough, A. Jones, and T.E. Mallouk, Chem. Mater. 14, 5140 (2002).

    Article  Google Scholar 

  3. C. Kan, W. Cai, C. Li, L. Zhang, and H. Hofmeister, J. Phys. D Appl. Phys. 36, 1609 (2003).

    Article  Google Scholar 

  4. J.A. Ascencio, Y. Mejia, H.B. Liu, C. Angeles, and G. Canizal, Langmuir 19, 5882 (2003).

    Article  Google Scholar 

  5. J.A. Ascencio, A.C. Rodríguez, H.B. Liu, and G. Canizal, Chem. Lett. 33, 1056 (2004).

    Article  Google Scholar 

  6. J. Pérez-Juste, I. Pastoriza-Santos, L.M. Liz-Marzán, and P. Mulvaney, Coord. Chem. Rev. 249, 1870 (2005).

    Article  Google Scholar 

  7. O. Salata, J. Nanobiotechnol. 2, 1 (2004).

    Article  Google Scholar 

  8. Q.A. Pankhurst, J. Connolly, S.K. Jones, and J. Dobson, J. Phys. D Appl. Phys. 36, R167 (2003).

    Article  Google Scholar 

  9. E. Moulin, J. Sukmanowski, P. Luo, R. Carius, F. Royer, and H. Stiebig, J. Non-Cryst. Solids 354, 2488 (2008).

    Article  Google Scholar 

  10. E. Moulin, J. Sukmanowski, P. Luo, R. Carius, F. Royer, and H. Stiebig, Thin Solid Films 516, 6813 (2007).

    Article  Google Scholar 

  11. R.A. Alvarez-Puebla and R.F. Aroca, Anal. Chem. 81, 2280 (2009).

    Article  Google Scholar 

  12. M. Mandal, S. Kundu, T.K. Sau, S.M. Yusuf, and T. Pal, Chem. Mater. 15, 3710 (2003).

    Article  Google Scholar 

  13. T. Liu, X. Xiao, P. Wang, L. Ji, and C. Yang, Chem. Phys. Lett. 553, 51 (2012).

    Article  Google Scholar 

  14. M. Valodkar, S. Modi, A. Pal, and S. Thakore, Mater. Res. Bull. 46, 384 (2011).

    Article  Google Scholar 

  15. H. Jing, Z. Yu, and L. Li, J. Biomed. Mater. Res., Part A 87, 33 (2008).

    Article  Google Scholar 

  16. N. Zhang, F.Y. Chen, and X.Q. Wu, Sci. Rep. 5, 1 (2015).

    Google Scholar 

  17. J.G. Bocarando-Chacon, M. Cortez-Valadez, D. Vargas-Vazquez, F.R. Melgarejo, M. Flores-Acosta, P.G. Mani-Gonzalez, E. Leon-Sarabia, A. Navarro-Badilla, and R. Ramírez-Bon, Physica E 59, 15 (2014).

    Article  Google Scholar 

  18. M. Cortez-Valadez, J.G. Bocarando-Chacon, A.R. Hernández-Martínez, R.B. Hurtado, R.A. Alvarez, J.F. Roman-Zamorano, and M. Flores-Acosta, Nanosci. Nanotechnol. Lett. 6, 580 (2014).

    Article  Google Scholar 

  19. L.P. Ramírez-Rodríguez, M. Cortez-Valadez, J.G. Bocarando-Chacon, H. Arizpe-Chávez, M. Flores-Acosta, S. Velumani, and R. Ramírez-Bon, Nano 9, 1450070 (2014).

    Article  Google Scholar 

  20. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, and D.J. Fox, Gaussian 09, Revision B.01 (Wallingford, CT: Gaussian, Inc., 2010).

    Google Scholar 

  21. K. Yoosaf, B.I. Ipe, C.H. Suresh, and K.G. Thomas, J. Phys. Chem. C 111, 12839 (2007).

    Article  Google Scholar 

  22. W.N. Sawaya, H.A. Khatchadourian, W.M. Safi, and H.M. Al-Muhammad, Int. J. Food Sci. Technol. 18, 183 (1983).

    Article  Google Scholar 

  23. M. Toda, A. Takagaki, M. Okamura, J.N. Kondo, S. Hayashi, K. Domen, and M. Hara, Nature 438, 178 (2005).

    Article  Google Scholar 

  24. J. Zhang, H. Liu, Z. Wang, and N. Ming, J. Solid State Chem. 180, 1291 (2007).

    Article  Google Scholar 

  25. M. Lattuada and T.A. Hatton, Nano Today 6, 286 (2011).

    Article  Google Scholar 

  26. M. Valodkar, S. Modi, A. Pal, and S. Thakore, Mater. Res. Bull. 46, 384 (2011).

    Article  Google Scholar 

  27. K.A. Bosnick, T.L. Haslett, S. Fedrigo, M. Moskovits, W.-T. Chan, and R. Fournier, J. Chem. Phys. 111, 8867 (1999).

    Article  Google Scholar 

  28. W. Fa and J. Dong, J. Comput. Theor. Nanosci. 12, 2498 (2012).

    Google Scholar 

Download references

Acknowledgements

The computational research in this investigation was facilitated by UNISON/Acarus. We appreciate the support given by the DCEN through Projects USO315001053 and USO315000709.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Cortez-Valadez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 55 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rocha-Rocha, O., Cortez-Valadez, M., Hernández-Martínez, .R. et al. Green Synthesis of Ag-Cu Nanoalloys Using Opuntia ficus-indica . J. Electron. Mater. 46, 802–807 (2017). https://doi.org/10.1007/s11664-016-4942-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4942-2

Keywords

Navigation