Skip to main content
Log in

Structures and Properties of C-Doped NiCr Thin Film Deposited by Closed-Field Unbalanced Magnetron Sputtering

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The structures and properties of C-doped NiCr thin film as embedded thin film resistor (ETFR) materials were studied by closed-field, unbalanced magnetron sputtering method. The C-doped NiCr (NiCrC1) thin film had more stable electrical performance, better corrosion resistance, and higher hardness than NiCr thin film. The temperature coefficient of resistance (TCR) of NiCrC1 thin film deposited at room temperature (from 19.73 ppm/K to 173.7 ppm/K) was lower than that of NiCr thin film (from 157.8 ppm/K to 378.9 ppm/K), and the sheet resistor (154.25 Ω/Sq) was higher than that of NiCr thin film (62.84 Ω/Sq). The preferred orientations of C-doped NiCr thin film was Ni (111), while that of NiCr thin film was Ni (011). The carbon-doped NiCr thin film can reduce the defects and stress and change the preferred orientations. The dominant carbon in C-doped NiCr thin film had a graphite-like structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Min, Synth. Met. 153, 49 (2005).

    Article  Google Scholar 

  2. J. Miller, Print. Circuit Des. Manuf. 22, 36 (2005).

    Google Scholar 

  3. P. Sandborn and P.A. Sandborn, IEEE Trans. Adv. Packag. 31, 76 (2008).

    Article  Google Scholar 

  4. L. Marcanti and J. Dougherty, Circuits Assem. 12, 28 (2001).

    Google Scholar 

  5. M. Oppermann, E. Feurer, and B. Holl, in MCM ‘94 Proceedings (1994), p. 279.

  6. G.Y. Zhou, W. He, S.X. Wang, C.Y. Chen, and C.P. Wong, Mater. Lett. 108, 75 (2013).

    Article  Google Scholar 

  7. T. Lenihan, L. Schaper, Y.Shi, G. Morcan, and J. Parkerson, in Proceedings of the IEEE 46th Electronic Components and Technology Conference (1996), p. 119.

  8. D. Scheid, in MCM ‘94 Proceedings (1994), p. 273.

  9. S.M. Kang, S.G. Yoon, S.J. Suh, and D.H. Yoon, Thin Solid Films 516, 3568 (2008).

    Article  Google Scholar 

  10. I.S. Park, S.Y. Park, G.H. Jeong, and S.J. Suh, Thin Solid Films 516, 5409 (2008).

    Article  Google Scholar 

  11. L.F. Lai, W.J. Zeng, X.Z. Fu, R. Sun, and R.X. Du, J. Alloys Compd. 538, 125 (2012).

    Article  Google Scholar 

  12. L.F. Lai, X.S. Su, X.Z. Fu, R. Sun, and C.P. Wong, Surf. Coat. Technol. 259, 759 (2014).

    Article  Google Scholar 

  13. M. Birkett and R. Penlington, J. Electron. Mater. 41, 2169 (2012).

    Article  Google Scholar 

  14. I.H. Kazi, P.M. Wild, T.N. Moore, and M. Sayer, Thin Solid Films 433, 337 (2003).

    Article  Google Scholar 

  15. M.F. Morks and C.C. Berndt, Appl. Surf. Sci. 256, 4322 (2010).

    Article  Google Scholar 

  16. M. Danışman and N. Cansever, J. Alloys Compd. 493, 649 (2010).

    Article  Google Scholar 

  17. J. Wang and S. Clouser, in Proceedings of the IPC Printed Circuits EXPO (2001), p. S08-1.

  18. E. Schippel, Thin Solid Films 144, 21 (1986).

    Article  Google Scholar 

  19. S. Yuichi, W. Masaya, and S. Susumu, Jpn. J. Appl. Phys. 40, 5091 (2001).

    Article  Google Scholar 

  20. J. Rölke, Electrocompon. Sci. Technol. 9, 51 (1981).

    Article  Google Scholar 

  21. K. Tao, X.L. Zhou, H. Cui, and J.S. Zhang, Surf. Coat. Technol. 203, 1406 (2009).

    Article  Google Scholar 

  22. J. Wang, R. Hilburn, S. Clouser, and B. Greenlee, in Proceedings of the IPC Annual Meeting (2002), p. S03-4.

  23. L.F. Lai, W.J. Zeng, X.Z. Fu, R. Sun, and R.X. Du, Surf. Coat. Technol. 218, 80 (2013).

    Article  Google Scholar 

  24. A.Y. Bykov, S.D. Karpukhin, Y.V. Panfilov, V.O. Cheptsov, and A.V. Osipov, Met. Sci. Heat Treat. 45, 396 (2003).

    Article  Google Scholar 

  25. M. Wahab, H. Mamat, and A. Jalar, Adv. Mater. Res. 146–147, 1937 (2010).

    Article  Google Scholar 

  26. P.Z. Sun, M. Zhu, K.L. Wang, M.L. Zhong, J.Q. Wei, D.H. Wu, H.W. Zhu, and A.C.S. Appl, Mater. Interfaces 5, 9563 (2013).

    Article  Google Scholar 

  27. D. Nachrodt, U. Paschen, A.T. Have, and H. Vogt, Electron Dev. Lett. 29, 212 (2008).

    Article  Google Scholar 

  28. E.H. Sondheimer, Adv. Phys. 1, 1 (1952).

    Article  Google Scholar 

  29. M.A. Howson, J. Phys. F Met. Phys. 14, L25 (1984).

    Article  Google Scholar 

  30. S.Y. Tan, X.H. Zhang, X.J. Wu, and J.Q. Jiang, Chin. J. Nonferrous Met. 21, 1367 (2011).

    Article  Google Scholar 

  31. F. Lai, L. Lin, Z. Huang, R. Gai, and Y. Qu, Appl. Surf. Sci. 253, 1801 (2006).

    Article  Google Scholar 

  32. S. Vinayak, H.P. Vyas, K. Muraleedharan, and V.D. Vankar, Thin Solid Films 514, 52 (2006).

    Article  Google Scholar 

  33. P. Poulopoulos, V. Kapaklis, C. Politis, P. Schweiss, and D. Fuchs, J. Nanosci. Nanotechnol. 6, 3867 (2006).

    Article  Google Scholar 

  34. A. Wang, P. Dhamelineourt, J. Dubessy, D. Guerard, P. Landais, and M. Lelaurain, Carbon 27, 209 (1989).

    Article  Google Scholar 

  35. A.M. Asl, P. Kameli, M. Ranjbar, H. Salamati, and M. Jannesari, Superlattices Microstruct. 81, 64 (2015).

    Article  Google Scholar 

  36. M. Chhowalla, A. Ferrari, J. Robertson, and G. Amaratunga, Appl. Phys. Lett. 76, 1419 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifei Lai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, L., Wang, J., Wang, H. et al. Structures and Properties of C-Doped NiCr Thin Film Deposited by Closed-Field Unbalanced Magnetron Sputtering. J. Electron. Mater. 46, 552–562 (2017). https://doi.org/10.1007/s11664-016-4928-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4928-0

Keywords

Navigation