Skip to main content
Log in

Elasticity, Hardness and Thermal Conductivity of Si-Ge-Based Oxynitrides (SiGeN2O)

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Capitalizing on density functional theory, the novel Si-Ge-based oxynitrides (SiGeN2O) have been studied in terms of mechanical and thermal properties. Regarding α- or β-SiGeN2O, the SiGeN2O exhibits smaller mechanical moduli, suggesting a compressible and soft material. Our calculated lattice constants of two SiGeN2O phases are very consistent with other values. In addition, the hardness for SiGeN2O is investigated in details according to different semi-empirical methods. The results indicate a small hardness of two phases of SiGeN2O. Furthermore, the mechanical anisotropy, Debye temperature and the minimum thermal conductivity of two SiGeN2O compounds are clearly estimated for both SiGeN2O compounds. It is found that the SiGeN2O compounds show low thermal conductivity, which is suitable to be used as a thermal barrier coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.F. Bisson, D. Fournier, M. Poulain, O. Lavigne, and R. Mevrel, J. Am. Ceram. Soc. 83, 1993 (2000).

    Article  Google Scholar 

  2. R.M. Costescu, D.G. Cahill, F.H. Fabreguette, Z.A. Sechrist, and S.M. George, Science 303, 989 (2004).

    Article  Google Scholar 

  3. R. Gadow and M. Lischka, Surf. Coat. Technol. 151, 392 (2002).

    Article  Google Scholar 

  4. B.R. Lawn, N.P. Padture, H. Cait, and F. Guiberteau, Science 263, 1114 (1994).

    Article  Google Scholar 

  5. W. Ma, D. Mack, J. Malzbender, R. Vaßen, and D. Stöver,J. Eur. Ceram. Soc. 28, 3071 (2008).

    Article  Google Scholar 

  6. J. Feng, B. Xiao, R. Zhou, W. Pan, and D.R. Clarke, Acta Mater. 6, 3380 (2012).

    Article  Google Scholar 

  7. J. Feng, C. Wan, B. Xiao, R. Zhou, W. Pan, and D.R. Clarke, Phys. Rev. B 84, 024302 (2011).

    Article  Google Scholar 

  8. J. Feng, B. Xiao, C.L. Wan, Z.X. Qu, Z.C. Huang, J.C. Chen, R. Zhou, and W. Pan, Acta Mater. 59, 1742 (2011).

    Article  Google Scholar 

  9. M.O. Jarligo, D.E. Mack, R. Vassen, and D. Stöver, J. Therm. Spray Technol. 18, 187 (2009).

    Article  Google Scholar 

  10. Y.C. Ding, Phys. B 407, 2190 (2012).

    Article  Google Scholar 

  11. C. Weng, J. Kouvetakis, and A.V.G. Chizmeshya, Chem. Mater. 22, 3884 (2010).

    Article  Google Scholar 

  12. M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, and M.C. Payne, J. Phys. Condens. Mater. 14, 2717 (2002).

    Article  Google Scholar 

  13. K. Laasonen, A. Pasquarello, R. Car, C. Lee, and D. Vanderbilt, Phys. Rev. B 47, 10142 (1993).

    Article  Google Scholar 

  14. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  15. H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  Google Scholar 

  16. J.J. Zhao, J.M. Winey, and Y.M. Gupta, Phys. Rev. B 75, 094105 (2007).

    Article  Google Scholar 

  17. Z.J. Wu, E.J. Zhao, H.P. Xiang, X.F. Hao, X.J. Liu, and J. Meng, Phys. Rev. B 76, 059904 (2007).

    Article  Google Scholar 

  18. W. Voigt, Lehrbuch der Kristallphysik (Verlag und Druck, Von B.G. Teubner, Leipzig, Berlin, 1928), pp. 962–979.

  19. A. Reuss, Z. Angew. Math. Mech. 9, 49 (1929).

    Article  Google Scholar 

  20. R. Hill, Proc. Phys. Soc. 65, 349 (1952).

    Article  Google Scholar 

  21. F.M. Gao, Phys. Rev. B 73, 132104 (2006).

    Article  Google Scholar 

  22. N.H. Miao, B.S. Sa, J. Zhou, Z.M. Zhou, and Z.M. Sun, Comput. Mater. Sci. 50, 1559 (2011).

    Article  Google Scholar 

  23. X. Jiang, J.J. Zhao, and X. Jiang, Comput. Mater. Sci. 50, 2287 (2011).

    Article  Google Scholar 

  24. X.Q. Chen, H. Niu, D. Li, and Y. Li, Intermetallics 19, 1275 (2011).

    Article  Google Scholar 

  25. Y.C. Ding and B. Xiao, Comput. Mater. Sci. 82, 202 (2014).

    Article  Google Scholar 

  26. S.I. Ranganathan and M.O. Starzewski, Phys. Rev. Lett. 101, 055504 (2008).

    Article  Google Scholar 

  27. P. Ravindran, L. Fast, P.A. Korzhavyi, B. Johansson, J. Wills, and O. Eriksson, J. Appl. Phys. 84, 4891 (1998).

    Article  Google Scholar 

  28. J. Feng, B. Xiao, R. Zhou, and W. Pan, Acta Mater. 61, 7364 (2013).

    Article  Google Scholar 

  29. D.G. Cahill, S.K. Watson, and R.O. Pohl, Phys. Rev. B 46, 6131 (1992).

    Article  Google Scholar 

  30. D.R. Clarke, Surf. Coat. Technol. 163, 67 (2003).

    Article  Google Scholar 

  31. D.G. Cahill and R.O. Pohl, Phys. Rev. B 35, 4067 (1987).

    Article  Google Scholar 

  32. Y.C. Ding and B. Xiao, Comput. Mater. Sci. 82, 202 (2014).

    Article  Google Scholar 

  33. X. Zhan, Z. Li, B. Liu, J. Wang, Y. Zhou, and Z. Hu, J. Am. Ceram. Soc. 95, 1429 (2012).

    Article  Google Scholar 

  34. X. Wang, H. Xiang, X. Sun, J. Liu, F. Hou, and Y. Zhou, J. Mater. Res. 29, 2673 (2014).

    Article  Google Scholar 

  35. J. Feng, B. Xiao, Z.X. Qu, R. Zhou, and W. Pan, Appl. Phys. Lett. 99, 201909 (2011).

    Article  Google Scholar 

  36. J. Feng, B. Xiao, R. Zhou, and W. Pan, Scr. Mater. 68, 727 (2013).

    Article  Google Scholar 

  37. S. Baroni, P. Giannozzi, and E. Isaev, Rev. Mineral. Geochem. 71, 39 (2010).

    Article  Google Scholar 

  38. A. Seko, F. Oba, A. Kuwabara, and I. Tanaka, Phys Rev. B 72, 024107 (2005).

    Article  Google Scholar 

  39. M.A. Blanco, E. Francisco, and V. Luana, Comput. Phys. Commun. 158, 57 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingchun Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Chen, M., Wu, W. et al. Elasticity, Hardness and Thermal Conductivity of Si-Ge-Based Oxynitrides (SiGeN2O). J. Electron. Mater. 46, 510–519 (2017). https://doi.org/10.1007/s11664-016-4915-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4915-5

Keywords

Navigation