Skip to main content
Log in

Effect of Silicon Carbide Nanoparticles on the Grain Boundary Segregation and Thermoelectric Properties of Bismuth Doped Mg2Si0.7Ge0.3

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The effect of silicon carbide (SiC) nanoparticles on the thermoelectric properties of Mg2Si0.676Ge0.3Bi0.024 was investigated. Increasing the concentration of SiC nanoparticles systematically reduces the electrical conductivity from 431 Ω−1 cm−1 for the pristine sample to 370 Ω−1 cm−1 for the sample with 1.5 wt.% SiC at 773 K, while enhancing the Seebeck coefficient from −202 μV K−1 to −215 μV K−1 at 773 K. In spite of the high thermal conductivity of SiC, its additions could successfully decrease the lattice thermal conductivity from 3.2 W m−1 K−1 to 2.7 W m−1 K−1 at 323 K, presumably by adding more interfaces. The Z contrast transmission electron microscopy imaging (Z = atomic number) and energy dispersive x-ray spectroscopy revealed bismuth segregation at the grain boundary. In summary, the figure of merit reached its maximum value of 0.75 at 773 K for the sample containing 0.5 wt.% SiC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.R. Furlong and E.J. Wahlquist, Nucl. News 42, 26 (1999).

    Google Scholar 

  2. J. Yang and T. Caillat, MRS Bull. 31, 224 (2006).

    Article  Google Scholar 

  3. M. Matsumoto, M. Mori, T. Haraguchi, M. Ohtani, T. Kubo, K. Matsumoto, and H. Matsuda, SAE Int. J. Engines 8, 1815 (2015).

    Google Scholar 

  4. M.V. Vedernikov and E.K. Iordanishvili, in Seventeenth International Conference on Thermoelectronics. Proceedings of ICT98 IEEE (1998), pp. 37–42

  5. S. LeBlanc, S.K. Yee, M.L. Scullin, C. Dames, and K.E. Goodson, Renew. Sustain. Energy Rev. 32, 313 (2014).

    Article  Google Scholar 

  6. N. Satyala and D. Vashaee, J. Electron. Mater. 41, 1785 (2012).

    Article  Google Scholar 

  7. M. Akasaka, T. Iida, A. Matsumoto, K. Yamanaka, Y. Takanashi, T. Imai, and N. Hamada, J. Appl. Phys. 104, 013703 (2008).

    Article  Google Scholar 

  8. N. Farahi, S. Prabhudev, G. Botton, J. Zhao, J.S. Tse, Z. Liu, J.R. Salvador, and H. Kleinke, J. Alloys Compd. 644, 249 (2015).

    Article  Google Scholar 

  9. S.K. Bux, M.T. Yeung, E.S. Toberer, G.J. Snyder, R.B. Kaner, and J.-P. Fleurial, J. Mater. Chem. 21, 12259 (2011).

    Article  Google Scholar 

  10. S.V. Faleev and F. Léonard, Phys. Rev. B 77, 214304 (2008).

    Article  Google Scholar 

  11. M. Zebarjadi, K. Esfarjani, A. Shakouri, J.-H. Bahk, Z. Bian, G. Zeng, J. Bowers, H. Lu, J. Zide, and A. Gossard, Appl. Phys. Lett. 94, 202105 (2009).

    Article  Google Scholar 

  12. M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.-P. Fleurial, and P. Gogna, Adv. Mater. 19, 1043 (2007).

    Article  Google Scholar 

  13. D. Cederkrantz, N. Farahi, K.A. Borup, B.B. Iversen, M. Nygren, and A.E.C. Palmqvist, J. Appl. Phys. 111, 023701 (2012).

    Article  Google Scholar 

  14. T. Yi, S. Chen, S. Li, H. Yang, S. Bux, Z. Bian, N.A. Katcho, A. Shakouri, N. Mingo, J.-P. Fleurial, N.D. Browning, and S.M. Kauzlarich, J. Mater. Chem. 22, 24805 (2012).

    Article  Google Scholar 

  15. S. Fiameni, S. Battiston, S. Boldrini, A. Famengo, F. Agresti, S. Barison, and M. Fabrizio, J. Solid State Chem. 193, 142 (2012).

    Article  Google Scholar 

  16. V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, A.Y. Samunin, and M.V. Vedernikov, Phys. Rev. B 74, 045207 (2006).

    Article  Google Scholar 

  17. G.A. Slack, J. Appl. Phys. 35, 3460 (1964).

    Article  Google Scholar 

  18. D.-W. Liu, J.-F. Li, C. Chen, and B.-P. Zhang, J. Electron. Mater. 40, 992 (2010).

    Article  Google Scholar 

  19. J.-F. Li and J. Liu, Phys. Status Solidi 203, 3768 (2006).

    Article  Google Scholar 

  20. N. Farahi, S. Prabhudev, M. Bugnet, G. Botton, J. Zhao, J.S. Tse, J.R. Salvador, and H. Kleinke, RSC Adv. 5, 65328 (2015).

    Article  Google Scholar 

  21. T. Ikeda, L. Haviez, Y. Li, and G.J. Snyder, Small 8, 2350 (2012).

    Article  Google Scholar 

  22. N. Nandihalli, S. Gorsse, and H. Kleinke, J. Solid State Chem. 226, 164 (2015).

    Article  Google Scholar 

  23. Y. Zheng, Q. Zhang, X. Su, H. Xie, S. Shu, T. Chen, G. Tan, Y. Yan, X. Tang, C. Uher, and G.J. Snyder, Adv. Energy Mater. 5, 1401391 (2015).

    Article  Google Scholar 

  24. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  Google Scholar 

  25. M. Zebarjadi, K. Esfarjani, M.S. Dresselhaus, Z.F. Ren, and G. Chen, Energy Environ. Sci. 5, 5147 (2012).

    Article  Google Scholar 

  26. D.L. Medlin and G.J. Snyder, Curr. Opin. Colloid Interface Sci. 14, 226 (2009).

    Article  Google Scholar 

  27. X. Zhou, G. Wang, L. Zhang, H. Chi, X. Su, J. Sakamoto, and C. Uher, J. Mater. Chem. 22, 2958 (2012).

    Article  Google Scholar 

  28. H.-S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, and G.J. Snyder, APL Mater. 3, 041506 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Kleinke.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11664_2016_4892_MOESM1_ESM.pdf

Figures S1–S7 and Tables S1–S2: Powder X-ray diffraction patterns of Mg2Si0.676Ge0.3Bi0.024 samples. Density and specific heat of the nanocomposites. SEM images of SiC rich region within the Mg2Si0.676Ge0.3Bi0.024 matrix. Line profile from grain boundary to bulk. Thermal diffusivity of all samples. Calculated Lorenz numbers between 300 K and 800 K. Power factor comparison of two bars obtained from the Mg2Si0.676Ge0.3Bi0.024/0.5% SiC composite (PDF 259 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farahi, N., Prabhudev, S., Bugnet, M. et al. Effect of Silicon Carbide Nanoparticles on the Grain Boundary Segregation and Thermoelectric Properties of Bismuth Doped Mg2Si0.7Ge0.3 . J. Electron. Mater. 45, 6052–6058 (2016). https://doi.org/10.1007/s11664-016-4892-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4892-8

Keywords

Navigation