Skip to main content

Advertisement

Log in

A Hybrid Maximum Power Point Tracking Method for Automobile Exhaust Thermoelectric Generator

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

To make full use of the maximum output power of automobile exhaust thermoelectric generator (AETEG) based on Bi2Te3 thermoelectric modules (TEMs), taking into account the advantages and disadvantages of existing maximum power point tracking methods, and according to the output characteristics of TEMs, a hybrid maximum power point tracking method combining perturb and observe (P&O) algorithm, quadratic interpolation and constant voltage tracking method was put forward in this paper. Firstly, it searched the maximum power point with P&O algorithms and a quadratic interpolation method, then, it forced the AETEG to work at its maximum power point with constant voltage tracking. A synchronous buck converter and controller were implemented in the electric bus of the AETEG applied in a military sports utility vehicle, and the whole system was modeled and simulated with a MATLAB/Simulink environment. Simulation results demonstrate that the maximum output power of the AETEG based on the proposed hybrid method is increased by about 3.0% and 3.7% compared with that using only the P&O algorithm and the quadratic interpolation method, respectively. The shorter tracking time is only 1.4 s, which is reduced by half compared with that of the P&O algorithm and quadratic interpolation method, respectively. The experimental results demonstrate that the tracked maximum power is approximately equal to the real value using the proposed hybrid method,and it can preferentially deal with the voltage fluctuation of the AETEG with only P&O algorithm, and resolve the issue that its working point can barely be adjusted only with constant voltage tracking when the operation conditions change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Kim, S. Park, S. Kim, and S.H. Rhi, J. Electron. Mater. 40, 5 (2011).

    Google Scholar 

  2. K.M. Saqr, M.K. Mansour, and M.N. Musa, Int. J. Automot. Technol. 58, 2 (2008).

    Google Scholar 

  3. W.D. Yun, X.Q. Ying, Z.Y. Sheng, X.J. Ming, and H.J. Xue, Adv. Mater. Res. 383–390, 2012 (2012).

    Google Scholar 

  4. S. Brunton, C.W. Rowley, S.R. Kulkarni, and C. Clarkson, IEEE Trans. Power Electron. 25, 2531 (2010).

    Article  Google Scholar 

  5. N. Phillip, O. Magnga, K.J. Burnham, M.A. Ellis, S. Robinson, J. Dunn, and C. Rouaud, J. Electron. Mater. 42, 7 (2012).

    Google Scholar 

  6. E. Koutroulis, K. Kalaitzakis, and N.C. Voulgaris, IEEE Trans. Power Electron. 16, 1 (2001).

    Article  Google Scholar 

  7. K. Abdelsalam, A.M. Massoud, S. Ahmed, and P.N. Enjeti, IEEE Trans. Power Electron. 26, 4 (2011).

    Article  Google Scholar 

  8. X.J. Dai and Q. Zhao, Power Syst. Prot. Control 37, 20 (2009).

    Google Scholar 

  9. O. Guenounou, B. Dahhou, and F. Chabour, Energy Convers. Manage. 78, 78 (2014).

    Article  Google Scholar 

  10. J. Eakburanawat and I. Boonyaroonate, Appl. Energy 83, 7 (2006).

    Article  Google Scholar 

  11. W. Fang, S.H. Quan, C.J. Xie, X.F. Tang, L.L. Wang, and L. Huang, J. Electron. Mater. 45, 3 (2016).

    Google Scholar 

  12. R.Y. Kim, J.S. Lai, B. York, and A. Koran, IEEE Trans. Ind. Electron. 56, 9 (2009).

    Google Scholar 

  13. M. Bond and J.D. Park, IEEE Trans. Ind. Electron. 62, 9 (2015).

    Article  Google Scholar 

  14. I. Laird, H. Lovatt, N. Savvides, D. Lu, and V.G. Agelidis, in Proceedings of Power Engineering Conference (2008).

  15. X.L. Gou, H. Xiao, and S.W. Yang, Appl. Energy 87, 10 (2010).

    Article  Google Scholar 

  16. K.H. Bae, S.M. Choi, K.H. Kim, H.S. Choi, W.S. Seo, I.H. Kim, S. Lee, and H.J. Hwang, J. Electron. Mater. 44, 6 (2015).

    Article  Google Scholar 

  17. S.X. Wang, B. Yang, and C. Lu, J. Tianjin Univ. Sci. Technol. 47, 1 (2014).

    Google Scholar 

  18. Q.Y. Li, N.C. Wang, and D.Y. Yi, Numerical Analysis, 4th ed. (Beijing: Springer, 2001), pp. 90–285.

    Google Scholar 

  19. P.C. Qiu, B.M. Ge, and D.Q. Bi, Power Syst. Prot. Control 39, 4 (2011).

    Google Scholar 

  20. X. Liu, Y.D. Deng, K. Zhang, M. Xu, Y. Xu, and C.Q. Su, Appl. Therm. Eng. 71, 1 (2014).

    Article  Google Scholar 

  21. Y.D. Deng, S.E. Ying, W.W. Zhan, and C.Q. Su, Eng. J. Wuhan Univ. 47, 1 (2014).

    Google Scholar 

  22. R. Quan, X.F. Tang, S.H. Quan, and L. Huang, J. Electron. Mater. 42, 7 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quan, R., Zhou, W., Yang, G. et al. A Hybrid Maximum Power Point Tracking Method for Automobile Exhaust Thermoelectric Generator. J. Electron. Mater. 46, 2676–2683 (2017). https://doi.org/10.1007/s11664-016-4875-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4875-9

Keywords

Navigation