Journal of Electronic Materials

, Volume 46, Issue 1, pp 443–450 | Cite as

Controlled Trapping of Onion-Like Carbon (OLC) via Dielectrophoresis

  • Marius Olariu
  • Alexandru Arcire
  • Marta E. Plonska-Brzezinska


Manipulation of onion-like carbon (OLC), also known as carbon nano-onions (CNOs), at the level of various arrays of microelectrodes is vital in practical applications such as biological and chemical sensing, ultracapacitors (supercapacitors), electromagnetic shielding, catalysis, tribology, optical limiting and molecular junctions in scanning tunneling microscopy, and field-effect transistors. In spite of technological developments in this area, rigorous handling of carbon nano-onions towards desired locations within a device remains a challenge, and the quantity of OLC required significantly influences the price of the final electrical or electronic device. We present herein an experimental study on electromanipulation and trapping of onion-like carbon (OLC) at the level of gold-patterned interdigitated microelectrodes through dielectrophoresis. The influence of the magnitude as well as frequency of the alternating-current (AC) voltage employed for OLC trapping is discussed in detail. The effects of tuning the AC field strength and frequency on the OLC trapping behavior are also considered.


Nanoparticles onion-like carbon dielectrophoresis impedance spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Financial support from the Executive Agency for Higher Education, Research, Development, and Innovation (UEFISCDI) through the National Plan for Research, Development, and Innovation 2007–2013—Joint Applied Research Projects, 2013 Competition, Contract No. 43/2014 (PN-II-PT-PCCA-2013-4), funded under the Joint Applied Research Projects—Parteneriate 2013, is gratefully acknowledged.


  1. 1.
    B. Xu, H. Jia, H. Zhou, H. Ichinose, and C. Iwamoto, MRS Proc. 675, W7.5.1 (2001). doi: 10.1557/PROC-675-W7.5.1.
  2. 2.
    J.K. McDonough and Y. Gogotsi, Electrochem. Soc. Interface 22, 61 (2013). doi: 10.1149/2.F05133if.
  3. 3.
    D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P.-L. Taberna, and P. Simon, Nat. Nanotechnol. 5:651 (2010). doi: 10.1038/NNANO.2010.162
  4. 4.
    Y.G. Gogotsi and I.V. Uvarova, Nanostruct. Mater. Coatings Biomed. Sensor Appl. (2003). doi: 10.1007/978-94-010- 0157-1
  5. 5.
    Y. Wang, G. Xing, Z. Jun Han, Y. Shi, J.I. Wong, Z.X. Huang, K. Ostrikovcde, and H.Y. Yang, Nanoscale 6, 8884 (2014). doi: 10.1039/C4NR01553C.CrossRefGoogle Scholar
  6. 6.
    J. Breczko, M.E. Plonska-Brzezinska, and L. Echegoyen, Electrochim. Acta 72, 61 (2012). doi: 10.1016/j.electacta.2012.03.177.CrossRefGoogle Scholar
  7. 7.
    O. Shenderova, V. Grishkoa, G. Cunninghama, S. Moseenkovb, G. McGuirea, and V. Kuznetsovb, Diamond Relat. Mater. 17, 462 (2008). doi: 10.1016/j.diamond.2007.08.023
  8. 8.
    J. Bartelmess and S. Giordani, Beilstein J. Nanotechnol. 5, 1980 (2014). doi: 10.3762/bjnano.5.207.CrossRefGoogle Scholar
  9. 9.
    W. Zhang, M. Yao, X. Fan, S. Zhao, S. Chen, C. Gong, Y. Yuan, R. Liu, and B. Liu, J. Chem. Phys. 142, 034702 (2015). doi: 10.1063/1.4905841.CrossRefGoogle Scholar
  10. 10.
    A.I. Romanenko, O.B. Anikeeva, V.L. Kuznetsov, T.I. Buryakov, E.N. Tkachev, S.I. Moseenkov, and A.N. Usoltseva, J. Optoelectron. Adv. Mater. 10, 1749 (2008).Google Scholar
  11. 11.
    J. Macutkevič, J. Banys, K. Glemža, V. Kuznetsov, V. Borjanovic, O. Shenderova, Lith. J. Phys. 53, 238 (2013). doi: 10.3952/physics.v53i4.2766.
  12. 12.
    K. Yamamoto, S. Akita, and Y. Nakayama, J. Phys. D Appl. Phys. 31, L34 (1998).CrossRefGoogle Scholar
  13. 13.
    X.Q. Chen, T. Saito, H. Yamada, and K. Matsushige, Appl. Phys. Lett. 78, 4 (2001).CrossRefGoogle Scholar
  14. 14.
    J. Suehiro, N. Sanob, G. Zhoua, H. Imakiirea, K. Imasakaa, and M. Haraa, Appl. Dielectroph. Fabric. Carbon Nanohorn Gas Sensor. (2005). doi: 10.1016/j.elstat.2005.11.001.
  15. 15.
    B.C. Gierhart, D.G. Howitt, S.J. Chen, R.L. Smith, and S.D. Collins, Langmuir 23, 12450 (2007). doi: 10.1021/la701472y.CrossRefGoogle Scholar
  16. 16.
    J. Suehiro, R. Yatsunami, R. Hamada, and M. Hara, J. Phys. D Appl. Phys. 32, 2814 (1999).CrossRefGoogle Scholar
  17. 17.
    J. Suehiro, R. Hamada, D. Noutomi, M. Shutouand, and M. Hara, J. Electrostat. 57, 157 (2003).CrossRefGoogle Scholar
  18. 18.
    J. Suehiro, M. Shutou, T. Hatanoand, and M. Hara, Sensors Actuators B Chem. 96, 144 (2003).CrossRefGoogle Scholar
  19. 19.
    P.J. Costanzo, E. Liang, T.E. Patten, S.D. Collins, and R.L. Smith, Lab Chip 5, 606 (2005).CrossRefGoogle Scholar
  20. 20.
    M.E. Plonska-Brzezinska, A. Lapinskib, Z.A. Wilczewskaa, A.T. Dubisa, A. Villalta-Cerdasc, K. Winklera, and L. Echegoyen, Carbon 49, 5079 (2011). doi: 10.1016/j.carbon.2011.07.027.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  • Marius Olariu
    • 1
  • Alexandru Arcire
    • 1
  • Marta E. Plonska-Brzezinska
    • 2
  1. 1.Faculty of Electrical Engineering and Information TechnologyGheorghe Asachi Technical University of IasiIasiRomania
  2. 2.Institute of ChemistryUniversity of BialystokBiałystokPoland

Personalised recommendations