Skip to main content
Log in

First-Principles Study on the Structural, Electronic, Magnetic and Thermodynamic Properties of Full Heusler Alloys Co2VZ (Z = Al, Ga)

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

We report on the investigation of the structural and physical properties of the Co2VZ (Z = Al, Ga) Heusler alloys, with L21 structure, through first-principles calculations involving the full potential linearized augmented plane-wave method within density functional theory. These physical properties mainly revolve around the electronic, magnetic and thermodynamic properties. By using the Perdew–Burke–Ernzerhof generalized gradient approximation, the calculated lattice constants and spin magnetic moments were found to be in good agreement with the experimental data. Furthermore, the thermal effects using the quasi-harmonic Debye model have been investigated in depth while taking into account the lattice vibrations, the temperature and the pressure effects on the structural parameters. The heat capacities, the thermal expansion coefficient and the Debye temperatures have also been determined from the non-equilibrium Gibbs functions. An application of the atom in molecule theory is presented and discussed in order to analyze the bonding nature of the Heusler alloys. The focus is on the mixing of the metallic and covalent behavior of Co2VZ (Z = Al, Ga) Heusler alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Shaughnessy, C.Y. Fong, R. Snow, L.H. Yang, X.S. Chen, and Z.M. Jiang, Phys. Rev. B 82, 035202 (2010).

    Article  Google Scholar 

  2. L. Damewood and C.Y. Fong, Phys. Rev. B 83, 113102 (2011).

    Article  Google Scholar 

  3. M. Shaughnessy, C.Y. Fong, R. Snow, K. Liu, J.E. Pask, and L.H. Yang, Appl. Phys. Lett. 95, 022515 (2009).

    Article  Google Scholar 

  4. I. Zutic, J. Fabian, and S.D. Sarma, Rev. Mod. Phys. 76, 323 (2004).

    Article  Google Scholar 

  5. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chtchelkanova, and D.M. Treger, Science 294, 1488 (2001).

    Article  Google Scholar 

  6. Z.G. Wei and R. Sandstrom, J. Mater. Sci. 33, 3743 (1998).

    Article  Google Scholar 

  7. B.R.K. Nanda and I. Dasgupta, J. Phys.: Condens. Matter 15, 7307 (2003).

    Google Scholar 

  8. M. Kawakami, Y. Kasamatsu, and H. Ido, J. Magn. Magn. Mater. 70, 265 (1987).

    Article  Google Scholar 

  9. S. Wurmehl, G.H. Fecher, H.C. Kandpal, V. Ksenofontov, C. Felser, and H.-J. Lin, Appl. Phys. Lett. 88, 032503 (2006).

    Article  Google Scholar 

  10. C.Y. Fong, J.E. Pask, and L.H. Yang, Materials for Engineering: Volume 2 Half Metallic Materials and Their Properties (Singapore: World Scientific Book, 2013).

  11. R.A. de Groot, F.M. Mueller, P.G. van Engen, and K.H.J. Buschow, Phys. Rev. Lett. 20, 2024 (1983).

    Article  Google Scholar 

  12. S. Lv, H. Li, D. Han, Z. Wu, X. Liu, and J. Meng, J. Magn. Magn. Mater. 323, 416 (2011).

    Article  Google Scholar 

  13. Y. Saeed, S. Nazir, A. Shaukat, and A.H. Reshak, J. Magn. Magn. Mater. 322, 3214 (2011).

    Article  Google Scholar 

  14. X.F. Ge and Y.M. Zhang, J. Magn. Magn. Mater. 321, 198 (2009).

    Article  Google Scholar 

  15. N. Xu, J.M. Raulot, Z.B. Li, J. Bai, Y.D. Zhang, X. Zhao, L. Zuo, and C. Esling, Appl. Phys. Lett. 100, 084106 (2012).

    Article  Google Scholar 

  16. F. Casper, T. Graf, S. Chadov, B. Balke, and C. Felser, Semicond. Sci. Technol. 27, 063001 (2012).

    Article  Google Scholar 

  17. I. Galanakis, P.H. Dederichs, and N. Papanikolaou, Phys. Rev. B 66, 174429 (2002).

    Article  Google Scholar 

  18. Y. Miura, M. Shirai, and K. Nagao, J. Appl. Phys. 99, 08J112 (2006).

    Article  Google Scholar 

  19. S. Amari, R. Mebsout, S. Meçabih, B. Abbar, and B. Bouhafs, Intermetallics 44, 26 (2014).

    Article  Google Scholar 

  20. R.F.W. Bader, Atoms in Molecules: A Quantum Theory (Oxford: Oxford University Press, 1990).

    Google Scholar 

  21. A.D. Becke and K.E. Edgecombe, J. Chem. Phys. 92, 5397 (1990).

    Article  Google Scholar 

  22. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

    Article  Google Scholar 

  23. W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965).

    Article  Google Scholar 

  24. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2 K, an Augmented Plane Wave+Local Orbitals Program for Calculating Crystal Properties, ed. by K. Schwarz (WIEN2k, 2014). http://www.wien2k.at. Accessed 16 Oct 2014.

  25. J.P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).

    Article  Google Scholar 

  26. J.P. Perdew, S. Burke, and M. Ernwerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  27. J. Rath and A.J. Freeman, Phys. Rev. B 11, 2109 (1975).

    Article  Google Scholar 

  28. R.A. Robie and J.L. Edwards, J. Chem. Phys. 37, 2659 (1966).

    Google Scholar 

  29. M.A. Blanco, E. Francisco, and V. Luana, Comput. Phys. Commun. 158, 57 (2004).

    Article  Google Scholar 

  30. M.A. Blanco, A.M. Pendás, E. Francisco, J.M. Recio, and R. Franco, J. Mol. Struct. (Theochem.) 368, 245 (1996).

    Article  Google Scholar 

  31. M. Flórez, J.M. Recio, E. Francisco, M.A. Blanco, and A.M. Pendás, Phys. Rev. B 66, 144112 (2002).

    Article  Google Scholar 

  32. E. Francisco, J.M. Recio, M.A. Blanco, and A.M. Pendás, J. Phys. Chem. 102, 1595 (1998).

    Article  Google Scholar 

  33. M.A. Blanco, E. Francisco, and V. Luana, Comput. Phys. Commun. 158, 57 (2004).

    Article  Google Scholar 

  34. O. Heusler, Ann. Phys. 19, 155 (1934).

    Article  Google Scholar 

  35. F.D. Murnaghan, Proc. Natl. Acad. Sci. U.S.A. 30, 244 (1944).

    Article  Google Scholar 

  36. A.W. Carbonari, R.N. Saxena, W. Pendl Jr, J.M. Filho, R.N. Attili, M. Olzon-Dionysio, and S.D. de Souza, Hyperfine Interact. 163, 313 (1996).

    Google Scholar 

  37. G. Hofer and H.H. Stadelmaier, Monatsh. Chem. 98, 408 (1967).

    Article  Google Scholar 

  38. S.E. Kulkova, S.V. Eremeev, T. Kakeshita, S.S. Kulkov, and G.E. Rudenski, Mater. Trans. 3, 599 (2006).

    Article  Google Scholar 

  39. K.H.J. Buschow and P.C. van Engen, J. Magn. Magn. Mater. 25, 90 (1981).

    Article  Google Scholar 

  40. H.C. Kandpal, G.H. Fecher, and C. Felser, J. Phys. D Appl. Phys. 40, 1507 (2006).

    Article  Google Scholar 

  41. D.P. Rai, A. Sandeep, M.P.Ghimire Shankar, and R.K. Thapa, Phys. Scr. 86, 045702 (2012).

    Article  Google Scholar 

  42. M. Yin, S. Chen, and P. Nash, J. All. Comp. 577, 49 (2013).

    Article  Google Scholar 

  43. K.R.A. Ziebeck and P.J. Webster, J. Phys. Chem. Solids 35, 1 (1974).

    Article  Google Scholar 

  44. P.J. Webster and K.R.A. Ziebeck, J. Phys. Chem. Solids 34, 1647 (1973).

    Article  Google Scholar 

  45. P.J. Webster, and K.R.A. Ziebeck, Alloys and Compounds of Delements with Main Group Elements, Part 2, ed. by H.R.J. Wijn and Landolt-Bornstein (Berlin: Springer, 1998), pp. 75–184.

  46. I. Galanakis, P.H. Dederichs, and N. Papanikolaou, Phys. Rev. B 66, 174429 (2002).

    Article  Google Scholar 

  47. A. Bentouaf and F.E.H. Hassan, J. Magn. Magn. Mater. 381, 65 (2015).

    Article  Google Scholar 

  48. P. Mori-Sanchez, A.M. Pendas, and V. Luana, J. Am. Chem. Soc. 124, 14721 (2002).

    Article  Google Scholar 

  49. A.E. van Arkel, Molecules and Crystals (London: Butterworths, 1949).

    Google Scholar 

  50. J.A.A. Ketelaar, Chemical Constitution, 2nd ed. (Amsterdam: Elsevier, 1958).

    Google Scholar 

  51. M.A. Blanco, E. Francisco, and V. Luoa, Comput. Phys. Commun. 158, 57 (2004).

    Article  Google Scholar 

  52. P. Debye, Ann. Phys. 39, 789 (1912).

    Article  Google Scholar 

  53. A.T. Petit and P.L. Dulong, Ann. ChimPhys. 10, 395 (1819).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Bentouaf.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bentouaf, A., Hassan, F.H., Reshak, A.H. et al. First-Principles Study on the Structural, Electronic, Magnetic and Thermodynamic Properties of Full Heusler Alloys Co2VZ (Z = Al, Ga). J. Electron. Mater. 46, 130–142 (2017). https://doi.org/10.1007/s11664-016-4859-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4859-9

Keywords

Navigation