Journal of Electronic Materials

, Volume 46, Issue 1, pp 130–142 | Cite as

First-Principles Study on the Structural, Electronic, Magnetic and Thermodynamic Properties of Full Heusler Alloys Co2VZ (Z = Al, Ga)

  • Ali Bentouaf
  • Fouad H. Hassan
  • Ali H. Reshak
  • Brahim Aïssa

We report on the investigation of the structural and physical properties of the Co2VZ (Z = Al, Ga) Heusler alloys, with L21 structure, through first-principles calculations involving the full potential linearized augmented plane-wave method within density functional theory. These physical properties mainly revolve around the electronic, magnetic and thermodynamic properties. By using the Perdew–Burke–Ernzerhof generalized gradient approximation, the calculated lattice constants and spin magnetic moments were found to be in good agreement with the experimental data. Furthermore, the thermal effects using the quasi-harmonic Debye model have been investigated in depth while taking into account the lattice vibrations, the temperature and the pressure effects on the structural parameters. The heat capacities, the thermal expansion coefficient and the Debye temperatures have also been determined from the non-equilibrium Gibbs functions. An application of the atom in molecule theory is presented and discussed in order to analyze the bonding nature of the Heusler alloys. The focus is on the mixing of the metallic and covalent behavior of Co2VZ (Z = Al, Ga) Heusler alloys.


FP-LAPW Heusler compounds magnetic properties thermal properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Shaughnessy, C.Y. Fong, R. Snow, L.H. Yang, X.S. Chen, and Z.M. Jiang, Phys. Rev. B 82, 035202 (2010).CrossRefGoogle Scholar
  2. 2.
    L. Damewood and C.Y. Fong, Phys. Rev. B 83, 113102 (2011).CrossRefGoogle Scholar
  3. 3.
    M. Shaughnessy, C.Y. Fong, R. Snow, K. Liu, J.E. Pask, and L.H. Yang, Appl. Phys. Lett. 95, 022515 (2009).CrossRefGoogle Scholar
  4. 4.
    I. Zutic, J. Fabian, and S.D. Sarma, Rev. Mod. Phys. 76, 323 (2004).CrossRefGoogle Scholar
  5. 5.
    S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chtchelkanova, and D.M. Treger, Science 294, 1488 (2001).CrossRefGoogle Scholar
  6. 6.
    Z.G. Wei and R. Sandstrom, J. Mater. Sci. 33, 3743 (1998).CrossRefGoogle Scholar
  7. 7.
    B.R.K. Nanda and I. Dasgupta, J. Phys.: Condens. Matter 15, 7307 (2003).Google Scholar
  8. 8.
    M. Kawakami, Y. Kasamatsu, and H. Ido, J. Magn. Magn. Mater. 70, 265 (1987).CrossRefGoogle Scholar
  9. 9.
    S. Wurmehl, G.H. Fecher, H.C. Kandpal, V. Ksenofontov, C. Felser, and H.-J. Lin, Appl. Phys. Lett. 88, 032503 (2006).CrossRefGoogle Scholar
  10. 10.
    C.Y. Fong, J.E. Pask, and L.H. Yang, Materials for Engineering: Volume 2 Half Metallic Materials and Their Properties (Singapore: World Scientific Book, 2013).Google Scholar
  11. 11.
    R.A. de Groot, F.M. Mueller, P.G. van Engen, and K.H.J. Buschow, Phys. Rev. Lett. 20, 2024 (1983).CrossRefGoogle Scholar
  12. 12.
    S. Lv, H. Li, D. Han, Z. Wu, X. Liu, and J. Meng, J. Magn. Magn. Mater. 323, 416 (2011).CrossRefGoogle Scholar
  13. 13.
    Y. Saeed, S. Nazir, A. Shaukat, and A.H. Reshak, J. Magn. Magn. Mater. 322, 3214 (2011).CrossRefGoogle Scholar
  14. 14.
    X.F. Ge and Y.M. Zhang, J. Magn. Magn. Mater. 321, 198 (2009).CrossRefGoogle Scholar
  15. 15.
    N. Xu, J.M. Raulot, Z.B. Li, J. Bai, Y.D. Zhang, X. Zhao, L. Zuo, and C. Esling, Appl. Phys. Lett. 100, 084106 (2012).CrossRefGoogle Scholar
  16. 16.
    F. Casper, T. Graf, S. Chadov, B. Balke, and C. Felser, Semicond. Sci. Technol. 27, 063001 (2012).CrossRefGoogle Scholar
  17. 17.
    I. Galanakis, P.H. Dederichs, and N. Papanikolaou, Phys. Rev. B 66, 174429 (2002).CrossRefGoogle Scholar
  18. 18.
    Y. Miura, M. Shirai, and K. Nagao, J. Appl. Phys. 99, 08J112 (2006).CrossRefGoogle Scholar
  19. 19.
    S. Amari, R. Mebsout, S. Meçabih, B. Abbar, and B. Bouhafs, Intermetallics 44, 26 (2014).CrossRefGoogle Scholar
  20. 20.
    R.F.W. Bader, Atoms in Molecules: A Quantum Theory (Oxford: Oxford University Press, 1990).Google Scholar
  21. 21.
    A.D. Becke and K.E. Edgecombe, J. Chem. Phys. 92, 5397 (1990).CrossRefGoogle Scholar
  22. 22.
    P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).CrossRefGoogle Scholar
  23. 23.
    W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965).CrossRefGoogle Scholar
  24. 24.
    P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2 K, an Augmented Plane Wave+Local Orbitals Program for Calculating Crystal Properties, ed. by K. Schwarz (WIEN2k, 2014). Accessed 16 Oct 2014.
  25. 25.
    J.P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).CrossRefGoogle Scholar
  26. 26.
    J.P. Perdew, S. Burke, and M. Ernwerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
  27. 27.
    J. Rath and A.J. Freeman, Phys. Rev. B 11, 2109 (1975).CrossRefGoogle Scholar
  28. 28.
    R.A. Robie and J.L. Edwards, J. Chem. Phys. 37, 2659 (1966).Google Scholar
  29. 29.
    M.A. Blanco, E. Francisco, and V. Luana, Comput. Phys. Commun. 158, 57 (2004).CrossRefGoogle Scholar
  30. 30.
    M.A. Blanco, A.M. Pendás, E. Francisco, J.M. Recio, and R. Franco, J. Mol. Struct. (Theochem.) 368, 245 (1996).CrossRefGoogle Scholar
  31. 31.
    M. Flórez, J.M. Recio, E. Francisco, M.A. Blanco, and A.M. Pendás, Phys. Rev. B 66, 144112 (2002).CrossRefGoogle Scholar
  32. 32.
    E. Francisco, J.M. Recio, M.A. Blanco, and A.M. Pendás, J. Phys. Chem. 102, 1595 (1998).CrossRefGoogle Scholar
  33. 33.
    M.A. Blanco, E. Francisco, and V. Luana, Comput. Phys. Commun. 158, 57 (2004).CrossRefGoogle Scholar
  34. 34.
    O. Heusler, Ann. Phys. 19, 155 (1934).CrossRefGoogle Scholar
  35. 35.
    F.D. Murnaghan, Proc. Natl. Acad. Sci. U.S.A. 30, 244 (1944).CrossRefGoogle Scholar
  36. 36.
    A.W. Carbonari, R.N. Saxena, W. Pendl Jr, J.M. Filho, R.N. Attili, M. Olzon-Dionysio, and S.D. de Souza, Hyperfine Interact. 163, 313 (1996).Google Scholar
  37. 37.
    G. Hofer and H.H. Stadelmaier, Monatsh. Chem. 98, 408 (1967).CrossRefGoogle Scholar
  38. 38.
    S.E. Kulkova, S.V. Eremeev, T. Kakeshita, S.S. Kulkov, and G.E. Rudenski, Mater. Trans. 3, 599 (2006).CrossRefGoogle Scholar
  39. 39.
    K.H.J. Buschow and P.C. van Engen, J. Magn. Magn. Mater. 25, 90 (1981).CrossRefGoogle Scholar
  40. 40.
    H.C. Kandpal, G.H. Fecher, and C. Felser, J. Phys. D Appl. Phys. 40, 1507 (2006).CrossRefGoogle Scholar
  41. 41.
    D.P. Rai, A. Sandeep, M.P.Ghimire Shankar, and R.K. Thapa, Phys. Scr. 86, 045702 (2012).CrossRefGoogle Scholar
  42. 42.
    M. Yin, S. Chen, and P. Nash, J. All. Comp. 577, 49 (2013).CrossRefGoogle Scholar
  43. 43.
    K.R.A. Ziebeck and P.J. Webster, J. Phys. Chem. Solids 35, 1 (1974).CrossRefGoogle Scholar
  44. 44.
    P.J. Webster and K.R.A. Ziebeck, J. Phys. Chem. Solids 34, 1647 (1973).CrossRefGoogle Scholar
  45. 45.
    P.J. Webster, and K.R.A. Ziebeck, Alloys and Compounds of Delements with Main Group Elements, Part 2, ed. by H.R.J. Wijn and Landolt-Bornstein (Berlin: Springer, 1998), pp. 75–184.Google Scholar
  46. 46.
    I. Galanakis, P.H. Dederichs, and N. Papanikolaou, Phys. Rev. B 66, 174429 (2002).CrossRefGoogle Scholar
  47. 47.
    A. Bentouaf and F.E.H. Hassan, J. Magn. Magn. Mater. 381, 65 (2015).CrossRefGoogle Scholar
  48. 48.
    P. Mori-Sanchez, A.M. Pendas, and V. Luana, J. Am. Chem. Soc. 124, 14721 (2002).CrossRefGoogle Scholar
  49. 49.
    A.E. van Arkel, Molecules and Crystals (London: Butterworths, 1949).Google Scholar
  50. 50.
    J.A.A. Ketelaar, Chemical Constitution, 2nd ed. (Amsterdam: Elsevier, 1958).Google Scholar
  51. 51.
    M.A. Blanco, E. Francisco, and V. Luoa, Comput. Phys. Commun. 158, 57 (2004).CrossRefGoogle Scholar
  52. 52.
    P. Debye, Ann. Phys. 39, 789 (1912).CrossRefGoogle Scholar
  53. 53.
    A.T. Petit and P.L. Dulong, Ann. ChimPhys. 10, 395 (1819).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  • Ali Bentouaf
    • 1
    • 2
  • Fouad H. Hassan
    • 3
  • Ali H. Reshak
    • 4
    • 5
  • Brahim Aïssa
    • 6
    • 7
  1. 1.Physics Department, Faculty of SciencesUniversity Hassiba Ben BoualiChlefAlgeria
  2. 2.Laboratory of Physical Chemistry of Advanced MaterialsUniversity of Djillali LiabesSidi-Bel-AbbesAlgeria
  3. 3.Faculté des Sciences (I), Laboratoire de Physique et d’Electronique (LPE)Université LibanaiseElhadathLebanon
  4. 4.New Technologies Research CenterUniversity of West BohemiaPilsenCzech Republic
  5. 5.Center of Excellence Geopolymer and Green Technology, School of Material EngineeringUniversity Malaysia PerlisKangarMalaysia
  6. 6.Qatar Environment and Energy Research Institute (QEERI)Hamad Bin Khalifa UniversityDohaQatar
  7. 7.Centre Energie, Matériaux et TélécommunicationsINRSBoulevard Lionel-Boulet VarennesCanada

Personalised recommendations