Skip to main content

Synthesis and Thermoelectric Properties of Ce1−z Pr z Fe4−x Co x Sb12 Skutterudites

Abstract

p-Type Ce1−z Pr z Fe4−x Co x Sb12 skutterudites were prepared by encapsulated melting, quenching, annealing, and hot pressing. While the skutterudite phase was successfully synthesized, a small amount of the secondary phase (FeSb2) was observed. According to the scanning electron microscope analysis, (Ce,Pr)Sb2 phases were also observed for Co-substituted specimens (x = 0.5). The electrical conductivity decreased with increasing temperature, implying a degenerate semiconductor behavior, and also decreased with increasing Co contents. All specimens showed p-type characteristics having positive signs of the Hall coefficient and the Seebeck coefficient. The Seebeck coefficient increased with increasing temperature and reached a maximum value at 823 K. The power factor (PF) increased with decreasing Co content and Ce0.75Pr0.25 Fe4Sb12 showed a peak value of PF = 3.2 mW m−1 K−2 at 823 K. The electronic thermal conductivity decreased with increasing Co contents and the lattice thermal conductivity decreased with decreasing Ce and Co contents at high temperature. The thermal conductivity increased at temperatures above 623 K due to bipolar conduction. The dimensionless figure␣of merit (ZT) showed a maximum value of ZT = 0.84 at 823 K for Ce0.25Pr0.75Fe4Sb12.

This is a preview of subscription content, access via your institution.

References

  1. L.E. Bell, Science 321, 1457 (2008).

    Article  Google Scholar 

  2. A. Leithe-Jasper, W. Schnelle, H. Rosner, A. Rabis, M. Baenitz, A.A. Gippius, E.N. Morozova, J.A. Mydosh, and Y. Grin, Phys. Rev. Lett. 91, 037208 (2013).

    Article  Google Scholar 

  3. D.R. Thompson, C. Liu, J. Yang, J.R. Salvador, D.B. Haddad, N.D. Ellison, R.A. Waldo, and J. Yang, Acta Mater. 92, 152 (2015).

    Article  Google Scholar 

  4. T. Dahal, Q. Jie, Y. Lan, C. Guo, and Z. Ren, Phys. Chem. Chem. Phys. 16, 18170 (2014).

    Article  Google Scholar 

  5. B.C. Scales, D. Mandrus, and R.K. Williams, Science 22, 1325 (1996).

    Article  Google Scholar 

  6. D.J. Singh and M.H. Du, Phys. Rev. B 82, 075115 (2010).

    Article  Google Scholar 

  7. M.V. Keepens, D. Mandrus, B.C. Sales, B.C. Chakoumakos, P. Day, R. Coldea, B. Maple, D.A. Gajewski, E.J. Freeman, and S. Bennington, Nature 395, 876 (1998).

    Article  Google Scholar 

  8. L. Zhang, A. Grytsiv, P. Rogl, E. Bauer, and M. Zehebauer, J. Phys. D 42, 225405 (2009).

    Article  Google Scholar 

  9. J. Yang, W. Zhang, Z.Q. Bai, Z. Mei, and L.D. Chen, Appl. Phys. Lett. 90, 192111 (2007).

    Article  Google Scholar 

  10. X.F. Tang, Q. Zhang, L.D. Chen, T. Goto, and T. Hirai, J. Appl. Phys. 97, 093712 (2005).

    Article  Google Scholar 

  11. X. Shi, J.O. Yang, J.R. Salvador, M.F. Chi, J.Y. Cho, H. Wang, S.Q. Bai, J.H. Wang, W.Q. Zhang, and L.D. Chen, J. Am. Chem. Soc. 133, 7837 (2011).

    Article  Google Scholar 

  12. X. Shi, H. Kong, C.P. Li, C. Uher, J. Yang, J.R. Salvador, H. Wang, L. Chen, and W. Zhang, Appl. Phys. Lett. 92, 182101 (2008).

    Article  Google Scholar 

  13. W. Zhao, P. Wei, Q. Zhang, C. Dong, L. Liu, and X.F. Tang, J. Am. Chem. Soc. 131, 3713 (2009).

    Article  Google Scholar 

  14. D.K. Shin and I.H. Kim, J. Korean Phys. Soc. 67, 1208 (2015).

    Article  Google Scholar 

  15. R. Liu, J. Yang, X. Chen, X. Shi, L. Chen, and C. Uher, Intermetallics 19, 1747 (2011).

    Article  Google Scholar 

  16. G.P. Meisner, D.T. Morelli, S. Hu, J. Yang, and C. Uher, Phys. Rev. Lett. 80, 3551 (1998).

    Article  Google Scholar 

  17. D. Bérardan, C. Godart, E. Alleno, E. Leroy, and P. Rogl, J. Alloys Compd. 350, 30 (2003).

    Article  Google Scholar 

  18. H. Kitagawa, M. Hasaka, T. Morimura, H. Nakashima, and S. Kondo, Mater. Res. Bull. 35, 185 (2000).

    Article  Google Scholar 

  19. X.F. Tang, L.D. Chen, T. Goto, T. Hirai, and R.Z. Yuan, J. Mater. Sci. 36, 5435 (2001).

    Article  Google Scholar 

  20. K.H. Park, S.I. Lee, W.S. Seo, D.K. Shin, and I.H. Kim, J. Korean Phys. Soc. 64, 863 (2014).

    Article  Google Scholar 

  21. Y.C. Lan, A.J. Minnich, G. Chen, and Z.F. Ren, Adv. Funct. Mater. 20, 357 (2010).

    Article  Google Scholar 

  22. C. Kittel, Introduction to Solid State Physics, 6th ed. (New York: Wiley, 1986), p. 152.

    Google Scholar 

  23. P.F. Qui, J. Yang, R.H. Liu, X. Shi, X.Y. Huang, G.J. Snyder, W. Zhang, and L.D. Chen, J. Appl. Phys. 109, 063713 (2011).

    Article  Google Scholar 

  24. D.K. Shin and I.H. Kim, J. Korean Phys. Soc. 65, 2071 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Dual Use Technology Program of the Agency for Defense Development, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il-Ho Kim.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Song, KM., Shin, DK., Jang, KW. et al. Synthesis and Thermoelectric Properties of Ce1−z Pr z Fe4−x Co x Sb12 Skutterudites. J. Electron. Mater. 46, 2634–2639 (2017). https://doi.org/10.1007/s11664-016-4847-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4847-0

Keywords

  • Thermoelectric
  • skutterudite
  • double filling
  • charge transport