Skip to main content
Log in

The AC (Alternating Current) Electrical Behavior of Multi-layered Thermoelectric Devices

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this study the ac (alternating current) small-signal electrical data in the frequency range 5 Hz ≤ f ≤ 13 MHz are obtained for the multi-layered thermoelectric (TE) devices to extract underlying operative mechanisms via an equivalent circuit model. This model is developed from the complex plane plots in conjunction with the Bode plot. It is observed that the inductive behavior is prevalent for both unbombarded and bombarded TE devices regardless of the doses as both types are observed as somewhat weak in thermoelectric properties. The bombarded multi-layered devices followed a systematic pattern in ac behavior via semicircular relaxation both in the impedance and admittance planes for the same measured data. This pattern is attributed to the transition from one lumped behavior to two distinct mechanisms. It is observed that the␣conductive nature of the equivalent circuit model via non-blocking (non-capacitive) elements, attributed to the underlying operative electrical paths between the two opposite electrodes across the multi-layered device exists, satisfying direct current conditions of the equivalent circuit model. The inductive behavior at high frequencies originates from the conductive aspect of the lumped response of the device in addition to the contribution of the electrode leads. Thus, the proposed equivalent circuit model contains external inductance that verifies a meaningful representation of the multi-layered TE device, though weak in thermoelectric properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Budak, K. Heidary, R.B. Johnson, T. Colon, C. Muntele, and D. Ila, Appl. Surf. Sci. 310, 221 (2014).

    Article  Google Scholar 

  2. S. Budak, E. Gulduren, B. Allen, J. Cole, J. Lassiter, T. Colon, C. Muntele, M.A. Alim, S. Bhattacharjee, and R.B. Johnson, Solid State Electron. 103, 131 (2015).

    Article  Google Scholar 

  3. S. Budak, C. Smith, M. Pugh, K. Heidary, T. Colon, R.B. Johnson, C. Muntele, and D. Ila, Radiat. Phys. Chem. 81, 410 (2012).

    Article  Google Scholar 

  4. P.-X. Lu, F. Wu, H.-L. Han, Q. Wang, Z.-G. Shen, and X. Hu, J. Alloys Compd. 505, 255 (2010).

    Article  Google Scholar 

  5. S. Budak, J. Chacha, C. Smith, M. Pugh, T. Colon, K. Heidary, R.B. Johnson, and D. Ila, Nucl. Instr. Meth. Phys. Res. B 269, 3204 (2011).

    Article  Google Scholar 

  6. Z. Xiong, X. Chen, X. Zhao, S. Bai, X. Huang, and L. Chen, Solid State Electron. 11, 1612 (2009).

    Google Scholar 

  7. S.B. Riffat and X. Ma, Appl. Therm. Eng. 23, 913 (2003).

    Article  Google Scholar 

  8. S. Güner, S. Budak, R.A. Minamisawa, C. Muntele, and D. Ila, Nucl. Instr. Meth. Phys. Res. B 266, 1261 (2008).

    Article  Google Scholar 

  9. S. Budak, R. Parker, C. Smith, C. Muntele, K. Heidary, R.B. Johnson, and D. Ila, J. Intell. Mater. Syst. Struct. 24, 1357 (2013).

    Article  Google Scholar 

  10. M.A. Alim, Act. Passiv. Electron. Comp. 19, 139 (1996).

    Article  Google Scholar 

  11. M.A. Alim, in Materials Research Society Symposium Proceedings: Electrically Based Microstructural Characterization, vol. 411 (Materials Research Society, 1996), p.␣13.

  12. M.A. Alim, in Materials Research Society Symposium Proceedings: Electrically Based Microstructural Characterization, vol. 411 (Materials Research Society, 1996), p.␣113.

  13. M.A. Alim, A.K. Batra, S. Bhattacharjee, and M.D. Aggarwal, Phys. B 406, 1088 (2011).

    Article  Google Scholar 

  14. M.A. Alim, A.K. Batra, M.D. Aggarwal, and J.R. Currie, Phys. B 406, 1445 (2011).

    Article  Google Scholar 

  15. A.K. Batra, J.R. Currie, M.A. Alim, and M.D. Aggarwal, J. Phys. Chem. Sol. 70, 1142 (2009).

    Article  Google Scholar 

  16. M.A. Alim, S.R. Bissell, and A.A. Mobasher, Phys. B 403, 3040 (2008).

    Article  Google Scholar 

  17. A.-M. Azad, L.L.W. Shyan, and M.A. Alim, J. Mater. Sci. 34, 1175 (1999).

    Article  Google Scholar 

  18. A.-M. Azad, L.L.W. Shyan, and M.A. Alim, J. Mater. Sci. 34, 3375 (1999).

    Article  Google Scholar 

  19. C.C. Wang, V.D. Patton, S.A. Akbar, and M.A. Alim, J. Mater. Res. 11, 422 (1996).

    Article  Google Scholar 

  20. C.C. Wang, W.H. Chen, S.A. Akbar, and M.A. Alim, J. Mater. Sci. 32, 2305 (1997).

    Article  Google Scholar 

  21. M.A. Alim, M.A. Seitz, and R.W. Hirthe, J. Appl. Phys. 63, 2337 (1988).

    Article  Google Scholar 

  22. I.M. Hodge, M.D. Ingram, and A.R. West, J. Electroanal. Chem. 74, 125 (1976).

    Article  Google Scholar 

  23. I.M. Hodge, M.D. Ingram, and A.R. West, J. Electroanal. Chem. Int. Electrochem. 58, 429 (1975).

    Article  Google Scholar 

  24. M.A. Seitz, Int. J. Hybrid Microelectron. (ISHM) 3, 1 (1980).

    Google Scholar 

  25. F.A. Grant, J. Appl. Phys. 29, 76 (1958).

    Article  Google Scholar 

  26. A.D. Downey, T.P. Hogan, and B. Cook, Rev. Sci. Instrum. 78, 093904 (2007).

    Article  Google Scholar 

  27. A. De Marchi and V. Giaretto, Rev. Sci. Instrum. 82, 034901 (2011).

    Article  Google Scholar 

  28. A. De Marchi and V. Giaretto, Rev. Sci. Instrum. 82, 104904 (2011).

    Article  Google Scholar 

  29. J. García-Cañadas and G. Min, J. Electron. Mater. 43, 2411 (2014).

    Article  Google Scholar 

  30. D.W. Davidson and R.H. Cole, J. Chem. Phys. 18, 1417 (1950).

    Article  Google Scholar 

  31. D.W. Davidson and R.H. Cole, J. Chem. Phys. 19, 1484 (1951).

    Article  Google Scholar 

  32. S. Havriliak and S. Negami, J. Polym. Sci. Part C 14, 99 (1966).

    Article  Google Scholar 

  33. S. Havriliak and S. Negami, Polymer 8, 161 (1967).

    Article  Google Scholar 

  34. A.K. Jonscher, J. Chem. Soc. Farad. Trans. 2 82, 75 (1986).

    Article  Google Scholar 

  35. J. Maserjian, J. Vac. Sci. Technol. 6, 843 (1969).

    Article  Google Scholar 

  36. M.A. Alim and S. Bhattacharjee, Alabama A&M University, unpublished research, 2010.

  37. W. Zhu, C.C. Wang, S.A. Akbar, A. Asiaie, P.K. Dutta, and M.A. Alim, Jpn. J. Appl. Phys. 35, 6145 (1996).

    Article  Google Scholar 

  38. R.J. Coelho, Physics of Dielectrics for the Engineer (New York: Elsevier Science, 1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad A. Alim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alim, M.A., Budak, S. & Bhattacharjee, S. The AC (Alternating Current) Electrical Behavior of Multi-layered Thermoelectric Devices. J. Electron. Mater. 45, 5588–5599 (2016). https://doi.org/10.1007/s11664-016-4839-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4839-0

Keywords

Navigation