Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Structural and Thermoelectronic Properties of Chalcopyrite MgSiX2 (X = P, As, Sb)

Abstract

We have explored the structural, electronic, optical, and mechanical properties of the magnesium-based chalcopyrites MgSiP2, MgSiAs2, and MgSiSb2 using density functional theory with five different generalized gradient approximation (GGA) functionals: Perdew–Wang (1991), Perdew–Burke–Ernzerhof, revised Perdew–Burke–Ernzerhof, modified Perdew–Burke–Ernzerhof for solids, and Armiento–Mattson (2005) as well as the local density approximation. Change of the constituent element from P to Sb significantly affected the lattice constants, elastic constants, and thermal and dielectric properties. Our theoretically computed results are in reasonable agreement with experiments and other theoretical calculations. The electronic band structure results imply that all three considered compounds are semiconductors. MgSiP2 has the highest value of elastic constants, and bulk and shear moduli compared with the other two binary chalcopyrites. Furthermore, the optical response in terms of the dielectric functions, optical reflectivity, refractive index, extinction coefficient, and electron energy loss of the compounds were also investigated in the energy range from 0 eV to 15 eV. The calculated optical results reveal optical polarization anisotropy for all three compounds, making them useful for optoelectronic device applications. Moreover, specific focus is also given to quantify the dependence of various thermal properties on finite pressure/temperature within the quasiharmonic approximation.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    J.L. Shay and J.H. Wernick, Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Applications (Oxford: Pergamon, 1975), pp. 1–254.

  2. 2.

    S.R. Römer, P. Kroll, and W. Schnick, J. Phys. Condens. Matter 21, 275407 (2009).

  3. 3.

    J.E. Jaffe and A. Zunger, Phys. Rev. B 27, 5176 (1983).

  4. 4.

    J.L. Martins and A. Zunger, Phys. Rev. B 32, 2689 (1985).

  5. 5.

    J.E. Jaffe and A. Zunger, Phys. Rev. B 29, 1882 (1984).

  6. 6.

    J.E. Jaffe and A. Zunger, Phys. Rev. B 30, 741 (1984).

  7. 7.

    S.Y. Sarkisov and S. Picozzi, J. Phys. Condens. Matter 19, 016210 (2007).

  8. 8.

    P. Zapol, R. Pandey, M. Seel, J.M. Recio, and M.C. Ohmer, J. Phys. Condens. Matter 11, 4517 (1999).

  9. 9.

    A.G. Petukhov, W.R.L. Lambrecht, and B. Segall, Phys. Rev. B 49, 4549–4558 (1994).

  10. 10.

    V. Kumar, S.K. Tripathy, V. Jha, and B.P. Singh, Phys. Lett. A 378, 519 (2014).

  11. 11.

    T. Ouahrani, Eur. Phys. J. B 86, 369 (2013).

  12. 12.

    T. Ouahrani, Y.Ö. Çiftci, and M. Mebrouki, J. Alloys Compd. 610, 372 (2014).

  13. 13.

    S.J. Park, Y. Cho, S.H. Moon, J.E. Kim, D.-K. Lee, J. Gwak, J. Kim, D.-K. Kim, and B.K. Min, J. Phys. D Appl. Phys. 47, 135105 (2014).

  14. 14.

    V.L. Shaposhnikov, A.V. Krivosheeva, F.A. D’Avitaya, J.-L. Lazzari, and V.E. Borisenko, Phys. Stat. Sol. (b) 245, 142 (2008).

  15. 15.

    F. Chiker, Z. Kebbab, R. Miloua, and N. Benramdane, Solid State Commun. 151, 1568 (2011).

  16. 16.

    C. Suh and K. Rajan, Appl. Surf. Sci. 223, 148 (2004).

  17. 17.

    S.C. Erwin and I. Žutić, Nat. Mater. 3, 410 (2004).

  18. 18.

    V.L. Shaposhnikov, A.V. Krivosheeva, V.E. Borisenko, J.-L. Lazzari, and F.A. d’Avitaya, Phys. Rev. B 85, 205201 (2012).

  19. 19.

    S. Ullah, G. Murtaza, R. Khenata, and A.H. Reshak, Mater. Sci. Semicond. Process. 26, 79 (2014).

  20. 20.

    L. Shi, J. Hu, Y. Qin, Y. Duan, L. Wu, X. Yang, and G. Tang, J. Alloys Compd. 611, 210 (2014).

  21. 21.

    M.V. Schilfgaarde, N. Newman, T.J. Peshek, T.J. Coutts, and T.A. Gessert, in Photovoltaic Specialists Conference (PVSC), 34th IEEE (2009), pp. 001297.

  22. 22.

    D.M. Ceperley and B.J. Alder, Phys. Rev. Lett. 45, 566 (1980).

  23. 23.

    J.P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).

  24. 24.

    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

  25. 25.

    B. Hammer, L.B. Hansen, and J.K. Norskøv, Phys. Rev. B 59, 7413 (1999).

  26. 26.

    R. Armiento and A.E. Mattsson, Phys. Rev. B 72, 085108 (2005).

  27. 27.

    J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, and K. Burke, Phys. Rev. Lett. 100, 136406 (2008).

  28. 28.

    G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

  29. 29.

    G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).

  30. 30.

    A.A. Vaipolin, Fiz. Tverd. Tela 15, 1430 (1973). [Sov. Phys. Solid State 15, 965 (1973)].

  31. 31.

    M. Rasander and M.A. Moram, J. Chem. Phys. 143, 144104 (2015).

  32. 32.

    Y.L. Page and P. Saxe, Phys. Rev. B 65, 104104 (2002).

  33. 33.

    M.J. Mehl, J.E. Osburn, D.A. Papaconstantopoulos, and B.M. Klein, Phys. Rev. B Condens. Matter 41, 10311 (1990).

  34. 34.

    Z. Yang, X. Wang, L. Liu, S. Yang, and X. Su, Solid State Sci. 13, 1604 (2011).

  35. 35.

    S. Sharma, A.S. Verma, and V.K. Jindal, Mater. Res. Bull. 53, 218 (2014).

  36. 36.

    Z.-J. Wu, E.J. Zhao, H.P. Xiang, X.F. Hao, X.J. Liu, and J. Meng, Phys. Rev. B 76, 054115 (2007).

  37. 37.

    V.V. Bannikov, I.R. Shein, and A.L. Ivanovskii, J. Alloys Compd. 533, 71 (2012).

  38. 38.

    J.B. Levine, S.H. Tolbert, and R.B. Kaner, Adv. Funct. Mater. 19, 3519 (2009).

  39. 39.

    W. Voigt, Lehrbuch der Kristallphysik, 2nd ed. (Leipzig and Berlin: B.G. Teubner, 1910) [reprinted in 1928].

  40. 40.

    A. Reuss and Z. Angew, Math. Mech. 9, 49 (1929).

  41. 41.

    R. Hill, Proc. R. Soc. Lond. Ser. A 65, 349 (1952).

  42. 42.

    S.F. Pugh, Philos. Mag. 45, 823 (1954).

  43. 43.

    D.G. Pettifor, Mater. Sci. Technol. 8, 345 (1992).

  44. 44.

    I. Papadimitriou, C. Utton, A. Scott, and P. Tsakiropoulos, Metall. Mater. Trans. A 46, 566 (2015).

  45. 45.

    H. Fu, D. Li, F. Peng, T. Gao, and X. Cheng, J. Alloys Compd. 473, 255 (2009).

  46. 46.

    I. N. Frantsevich, F. F. Voronov, S. A. Bokuta, in Elastic Constants and Elastic Moduli of Metals and Insulators Handbook, ed. by I.N. Frantsevich (Naukova Dumka, Kiev, 1983), pp. 60–180.

  47. 47.

    P. Ravindran, L. Fast, P.A. Korzhavyi, and B. Johansson, J. Appl. Phys. 84, 4891 (1998).

  48. 48.

    D.H. Chung and W.R. Buessem, Anisotropy in Single Crystal Refractory Compound, vol 2, ed. by F.W. Vahldiek and S.A. Mersol (New York: Plenum, 1968), p. 217.

  49. 49.

    S.I. Ranganathan and M. Ostoja-Starzewski, Phys. Rev. Lett. 101, 055504 (2008).

  50. 50.

    M.A. Blanco, E. Francisco, and V. Luana, Comput. Phys. Commun. 158, 57 (2004).

  51. 51.

    E. Francisco, M.A. Blanco, and G. Sanjurjo, Phys. Rev. B 63, 094107 (2001).

  52. 52.

    S. Sharma, A.S. Verma, R. Bhandari, and V.K. Jindal, Comput. Mater. Sci. 26, 108 (2014).

  53. 53.

    B. Ai, X. Luo, J. Yu, W. Miao, and P. Hub, Comput. Mater. Sci. 82, 37 (2014).

  54. 54.

    X. Zha, S. Li, R. Zhang, and Z. Lin, Commun. Comput. Phys. 16, 201 (2014).

  55. 55.

    C.H.L. Goodman, Semicond. Sci. Technol. 6, 725 (1991).

  56. 56.

    Z. Zhaochun, P. Ruiwu, and C. Nianyi, Mater. Sci. Eng. B 54, 149 (1998).

  57. 57.

    K. Momma and F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011).

  58. 58.

    I. Ahmad and M. Maqbool, Comput. Phys. Commun. 185, 2829 (2014).

  59. 59.

    C.M.I. Okoye, J. Phys. Condens. Matter 15, 5945 (2003).

  60. 60.

    F. Wooten, Optical Properties of Solids (New York: Academic, 1972).

  61. 61.

    N. Korozlu, K. Colakoglu, E. Deligoz, and Y.O. Ciftci, Opt. Commun. 284, 1863 (2011).

  62. 62.

    B. Amin, I. Ahmad, M. Maqbool, S. Goumri-Said, and R. Ahmad, J. Appl. Phys. 109, 023109 (2011).

  63. 63.

    P. Ravindran, A. Delin, B. Johansson, O. Eriksson, and J.M. Wills, Phys. Rev. B 59, 1776 (1999).

Download references

Author information

Correspondence to Y. O. Ciftci.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kocak, B., Ciftci, Y.O. & Surucu, G. Structural and Thermoelectronic Properties of Chalcopyrite MgSiX2 (X = P, As, Sb). Journal of Elec Materi 46, 247–264 (2017). https://doi.org/10.1007/s11664-016-4836-3

Download citation

Keywords

  • Chalcopyrites
  • semiconductor
  • thermal properties
  • optical properties