Skip to main content

Advertisement

Log in

Freestanding Aligned Multi-walled Carbon Nanotubes for Supercapacitor Devices

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We report on the synthesis and electrochemical properties of multi-walled carbon nanotubes (MWCNTs) for supercapacitor devices. Freestanding vertically-aligned MWCNTs and MWCNT powder were grown concomitantly in a one-step chemical vapour deposition process. Samples were characterized by scanning and transmission electron microscopies and Fourier transform infrared and Raman spectroscopies. At similar film thicknesses and surface areas, the freestanding MWCNT electrodes showed higher electrochemical capacitance and gravimetric specific energy and power than the randomly-packed nanoparticle-based electrodes. This suggests that more ordered electrode film architectures facilitate faster electron and ion transport during the charge–discharge processes. Energy storage and supply or supercapacitor devices made from these materials could bridge the gap between rechargeable batteries and conventional high-power electrostatic capacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-H. Kim, K. Zhu, Y. Yan, C.L. Perkins, and A.J. Frank, Nano Lett. 10, 4099 (2010).

    Article  Google Scholar 

  2. F.I. Dar, K.R. Moonooswamy and M. Es-Souni, Nanoscale Res. Lett. 8, 363 (2013).

  3. J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, and P.L. Taberna, Science 313, 1760 (2006).

    Article  Google Scholar 

  4. R.S. Borges, A.L.M. Reddy, M-T.F. Rodrigues, H. Gullapalli, K. Balakrishnan, G.G. Silva and P.W. Ajayan. Sci. Rep. 3, 2572 (2013).

  5. P.H. Chen and R.L. McCreery, Anal. Chem. 68, 3965 (1996).

    Google Scholar 

  6. J.M. Nugent, K.S.V. Santhanam, A. Rubio, and P.M. Ajayan, Nano Lett. 1, 91 (2001).

    Article  Google Scholar 

  7. M. Terrones, Annu. Rev. Mater. Res. 33, 501 (2003).

    Article  Google Scholar 

  8. H. Zanin, A. Margraf-Ferreira, N.S. da Silva, F.R. Marciano, E.J. Corat, and A.O. Lobo, Mater. Sci. Eng. C Mater. Biol. Appl. 41, 65 (2014).

    Article  Google Scholar 

  9. M.A.V.M. Grinet, H. Zanin, A.E.C. Granata, M. Porcionatto, F.R. Marciano, and A.O. Lobo, J. Mater. Chem. B 2, 1196 (2014).

    Article  Google Scholar 

  10. T.W. Ebbesen and P.M. Ajayan, Nature 358, 222 (1992).

    Article  Google Scholar 

  11. K.P. De Jong and J.W. Geus, Rev. Sci. Eng. 42, 481–510 (2000).

    Article  Google Scholar 

  12. R.L. Vander Wal, T.M. Ticich, and V.E. Curtis, J. Phys. Chem. B 104, 11611 (2000).

    Article  Google Scholar 

  13. P.M. Ajayan, J.M. Nugent, R.W. Siegel, B. Wei, and P. Kohler-Redlich, Nature 404, 243 (2000).

    Article  Google Scholar 

  14. D.L. Lichtenberger, K.W. Nebesny, C.D. Ray, D.R. Huffman, and L.D. Lamb, Chem. Phys. Lett. 176, 208 (1991).

    Article  Google Scholar 

  15. Q.L. Zhang, S.C. Obrien, J.R. Heath, Y. Liu, R.F. Curl, and H.W. Kroto, J. Phys. Chem. 90, 528 (1986).

    Google Scholar 

  16. V.L. Kuznetsov, A.L. Chuvilin, Y.V. Butenko, I.Y. Malkov, and V.M. Titov, Chem. Phys. Lett. 222, 348 (1994).

    Article  Google Scholar 

  17. J.Y. Miao, D.W. Hwang, K.V. Narasimhulu, P.-I. Lin, Y.-T. Chen, S.-H. Lin and L.-P. Hwang, Carbon 42, 813 (2004).

  18. D. Ugarte, Nature 359, 709 (1992).

    Article  Google Scholar 

  19. H. Wang and L. Pilon, Electrochim. Acta 64, 139 (2012).

    Google Scholar 

  20. M.D. Stoller and R.S. Ruoff, Energy Environ. Sci. 3, 1294 (2010).

    Article  Google Scholar 

  21. D.W. Wang, F. Li, M. Liu, G.Q. Lu, and H.M. Cheng, Angew. Chem. Int. Ed. 48, 1525 (2009).

    Article  Google Scholar 

  22. L. Demarconnay, E. Raymundo-Pinero, and F. Beguin, Electrochem. Commun. 12, 1275 (2010).

    Article  Google Scholar 

  23. S. Biswas and L.T. Drzal, Chem. Mater. 22, 5667 (2010).

    Article  Google Scholar 

  24. D. Ge, L. Yang, L. Fan, C. Zhang, X. Xiao, Y. Gogotsi, and S. Yang, Nano Energy 11, 568 (2015).

    Article  Google Scholar 

  25. I.A.W.B. Siqueira, C.A.G.S. Oliveira, H. Zanin, M.A.V.M. Grinet, A.E.C. Granato, M.A. Porcionatto, F.R. Marciano, and A.O. Lobo, J. Mater. Sci. Mater. Med. 26, 10 (2015).

    Article  Google Scholar 

  26. H. Zanin, P.W. May, A.O. Lobo, E. Saito, J.P.B. Machado, G. Martins, V.J. Trava-Airoldi, and E.J. Corat, J. Electrochem. Soc. 161, H290 (2014).

    Article  Google Scholar 

  27. E.R. Edwards, E.F. Antunes, E.C. Botelho, M.R. Baldan, and E.J. Corat, Appl. Surf. Sci. 258, 641 (2011).

    Article  Google Scholar 

  28. T.A. Silva, H. Zanin, F.C. Vicentini, E.J. Corat, and O. Fatibello-Filho, Analyst 139, 2832 (2014).

    Article  Google Scholar 

  29. Y. Li, K. Sheng, W. Yuan, and G. Shi, Chem. Commun. 49, 291 (2013).

    Article  Google Scholar 

  30. E.F. Antunes, A.O. Lobo, E.J. Corat, V.J. Trava-Airoldi, A.A. Martin, and C. Verissimo, Carbon 44, 2202 (2006).

    Article  Google Scholar 

  31. M.S. Dresselhaus, A. Jorio, M. Hofmann, G. Dresselhaus, and R. Saito, Nano Lett. 10, 751 (2010).

    Article  Google Scholar 

  32. A.C. Ferrari, Solid State Commun. 143, 47 (2007).

    Article  Google Scholar 

  33. H. Zanin, E. Saito, H.J. Ceragioli, V. Baranauskas, and E.J. Corat, Mater. Res. Bull. 49, 487 (2014).

    Article  Google Scholar 

  34. H. Zanin, L.M. Hollanda, H.J. Ceragioli, M.S. Ferreira, D. Machado, M. Lancellotti, R.R. Catharino, V. Baranauskas, and A.O. Lobo, Mater. Sci. Eng. C Mater. Biol. Appl. 39, 359 (2014).

    Article  Google Scholar 

  35. APowerCap Technologies, Products. http://www.apowercap.com/?pg=18&lang=eng&rand=95679520. Accessed 16 July 2016.

  36. Illinois Capacitor, EDLC/SUPERCAPACITORS. http://www.illinoiscapacitor.com/products/super-capacitors.aspx. Acce- ssed 16 July 2016.

  37. Ioxus, OUR CELLS. http://www.ioxus.com/english/products/cells/. Accessed 16 July 2016.

  38. JSR Micro, Lithium Ion Capacitor. http://www.jsrmicro.com/index.php/EnergyAndEnvironment/LithiumIonCapacitor/. Accessed 16 July 2016.

  39. Korchip, StartCap. http://www.korchip.com/eng/. Accessed 16 July 2016.

  40. Maxwell ultracapacitors: enabling energy’s future. Ultracapacitor overview. http://www.maxwell.com/products/ultracapacitors/. Accessed 16 July 2016.

  41. Murata, Supercapacitors (EDLC). http://www.murata.com/products/capacitor/edlc. Accessed 16 July 2016.

  42. Nesscap, Overview. http://www.nesscap.com/product/overview.jsp. Accessed 16 July 2016.

  43. Masters, Green Caps. http://www.masters.com.pl/files/ds/samwha/samwha-green-cap.pdf. Accessed 16 July 2016.

  44. Skeletontech, Our Technology. http://www.skeletontech.com/technologies. Accessed 16 July 2016.

  45. Vina Tech, Supercapacitorvina. http://www.supercapacitorvina.com/?ckattempt=1. Accessed 16 July 2016.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hudson Zanin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreira, J.V.S., Corat, E.J., May, .W. et al. Freestanding Aligned Multi-walled Carbon Nanotubes for Supercapacitor Devices. J. Electron. Mater. 45, 5781–5788 (2016). https://doi.org/10.1007/s11664-016-4817-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4817-6

Keywords

Navigation