Skip to main content
Log in

Spectral Absorption Depth Profile: A Step Forward to Plasmonic Solar Cell Design

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Absorption depth profile, a deterministic and key factor that defines the quality of excitons generation rate in optoelectronic devices, is numerically predicted using finite different time domain analysis. A typical model, nanoparticles array on silicon slab, was devised considering the concept of plasmonic solar cell design. The trend of spectral absorption depth profile distributions at various wavelengths of the solar spectrum, 460 nm, 540 nm, 650 nm, 815 nm, and 1100 nm, was obtained. A stronger and well-distributed absorption profile was obtained at ∼650 nm of the solar spectrum (i.e. ∼1.85 eV, c-Si bandgap), although the absorbing layer was affected more than a half micron depth at shorter wavelengths. Considering the observations obtained from this simulation, we have shown a simple two-step method in fabricating ultra-pure silver (Ag) nanoparticles that can be used as plasmonic nanoscatterers in a thin film solar cell. The morphology and elemental analysis of as-fabricated Ag nanoparticles was confirmed by field emission scanning electron microscope (FESEM) and FESEM-coupled electron diffraction spectroscopy. The size of the as-fabricated Ag nanoparticles was found to range from 50 nm to 150 nm in diameter. Further investigations on structural and optical properties of the as-fabricated specimen were carried out using ultraviolet–visible (UV–Vis) absorption, photoluminesce, and x-ray diffraction (XRD). Preferential growth of ZnO along {002} was confirmed by XRD pattern that was more intense and broadened at increasing annealing temperatures. The lattice parameter c was found to increase, whereas grain size increased with increasing annealing temperature. The optical bandgap was also observed to decrease from 3.31 eV to 3.25 eV at increasing annealing temperatures through UV–Vis measurements. This parallel investigation on optical properties by simulation is in line with experimental studies and, in fact, facilitates devising optimum process cost for efficient thin film solar cell design, as well as light trapping using plasmonic nanoscatterers incorporated within the active layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (New York: Springer, 1995).

    Book  Google Scholar 

  2. E. Yablonovitch and G.D. Cody, IEEE Electron Trans. Dev. 29, 300 (1982).

    Article  Google Scholar 

  3. H.W. Deckman, C.B. Roxlo, and E. Yablonovitch, Opt. Lett. 8, 491 (1983).

    Article  Google Scholar 

  4. M.K. Hossain, Adv. Mater. Res. 1116, 59 (2015).

    Article  Google Scholar 

  5. M.K. Hossain, Q.A. Drmosh, A.W. Mukhaimer, and H.M. Bahaidarah, Appl. Phys. A 117, 459 (2014).

    Article  Google Scholar 

  6. M.K. Hossain, Adv. Mater. Res. 1116, 51 (2015).

    Article  Google Scholar 

  7. H. Sai, Y. Kanamori, and M. Kondo, Appl. Phys. Lett. 98, 113502 (2011).

    Article  Google Scholar 

  8. K. Söderström, G. Bugnon, and F. Haug, Sol. Energy Mater. Sol. Cell 101, 193 (2012).

    Article  Google Scholar 

  9. M. Boccard, P. Cuony, and M. Despeisse, Sol. Energy Mater. Sol. Cell 95, 195 (2011).

    Article  Google Scholar 

  10. H. Li, R. Franken, and R. Stolk, Solid State Phenom. 131, 27 (2008).

    Article  Google Scholar 

  11. T. Söderström, F.-J. Haug, V. Terrazzoni-Daudrix, and C. Ballif, J. Appl. Phys. 103, 114509 (2008).

    Article  Google Scholar 

  12. S. Ghosh, S. J. Han, B. R. Hoard, E. C. Culler, J. E. Bonilla, E. J. Martin, J. Grey, S. M. Han, S. E. Han, in IEEE Xplore Photovolt. Spec. Conf. IEEE42nd (2015), p. 1.

  13. P. Cuony, M. Marending, D.T.L. Alexander, M. Boccard, G. Bugnon, M. Despeisse, and C. Ballif, Appl. Phys. Lett. 97, 213502 (2010).

    Article  Google Scholar 

  14. M. Despeisse and G. Bugnon, Appl. Phys. Lett. 96, 073507 (2010).

    Article  Google Scholar 

  15. B. Rech and H. Wagner, Appl. Phys. A 69, 155 (1999).

    Article  Google Scholar 

  16. D.S. Shen, H. Chatham, and P.K. Bhat, Sol. Cells 30, 271 (1991).

    Article  Google Scholar 

  17. H.A. Atwater and A. Polman, Nat. Mater. 11, 174 (2010).

    Google Scholar 

  18. M.K. Hossain, Y. Kitahama, G.G. Huang, T. Kaneko, and Y. Ozaki, Appl. Phys. B 93, 165 (2008).

    Article  Google Scholar 

  19. K. Imura, H. Okamoto, M.K. Hossain, and M. Kitajima, Nano Lett. 6, 2173 (2006).

    Article  Google Scholar 

  20. K.R. Catchpole and A. Polman, Opt. Express 16, 21793 (2008).

    Article  Google Scholar 

  21. O.L. Muskens, J.G. Rivas, R.E. Algra, E.P.A.M. Bakkers, and A. Lagendijk, Nano Lett. 8, 2638 (2008).

    Article  Google Scholar 

  22. M.K. Hossain, Y. Kitahama, V. Biju, T. Itoh, T. Kaneko, and Y. Ozaki, J. Phys. Chem. C 113, 11689 (2009).

    Article  Google Scholar 

  23. M.K. Hossain, T. Shimada, M. Kitajima, K. Imura, and H. Okamoto, Langmuir 24, 9241 (2008).

    Article  Google Scholar 

  24. M.K. Hossain, T. Shimada, M. Kitajima, K. Imura, and H. Okamoto, J. Microsc. 229, 327 (2008).

    Article  Google Scholar 

  25. V.E. Ferry, J.N. Munday, and H.A. Atwater, Adv. Mater. 22, 4794 (2010).

    Article  Google Scholar 

  26. K. Nakayama, K. Tanabe, and H.A. Atwater, Appl. Phys. Lett. 93, 121904 (2008).

    Article  Google Scholar 

  27. C.F. Bohren and D.R. Huffman, Absorption and Scattering of Light by Small Particles (Chicago: John Wiley & Sons, 2008).

  28. J. Mertz, J. Opt. Soc. Am. B 17, 1906 (2000).

    Article  Google Scholar 

  29. D. Derkacs, W.V. Chen, P.M. Matheu, S.H. Lim, P.K.L. Yu, and E.T. Yu, Appl. Phys. Lett. 93, 091107 (2008).

    Article  Google Scholar 

  30. R. Santbergen, T. Temple, and R. Liang, J. Opt. 14, 024010 (2012).

    Article  Google Scholar 

  31. Q.A. Drmosh, M.K. Hossain, F.H. Alharbi, and N. Tabet, J. Mater. Sci. Mater. Electron. 26, 139 (2015).

    Article  Google Scholar 

  32. V.E. Ferry, M.A. Verschuuren, H.B.T. Li, E. Verhagen, R.J. Walters, R.E.I. Schropp, H.A. Atwater, and A. Polman, Opt. Express 18, A237 (2010).

    Article  Google Scholar 

  33. S. Dengler, C. Kübel, and A. Schwenke, J. Opt. 14, 075203 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad K. Hossain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossain, M.K., Mukhaimer, A.W. & Drmosh, Q.A. Spectral Absorption Depth Profile: A Step Forward to Plasmonic Solar Cell Design. J. Electron. Mater. 45, 5695–5702 (2016). https://doi.org/10.1007/s11664-016-4808-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4808-7

Key words

Navigation