Skip to main content
Log in

Microstructure and Electrical Conductivity of ZnO Addition on the Properties of (Bi0.92Ho0.03Er0.05)2O3

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The solid electrolyte is one of the most important components for a solid oxide fuel cell (SOFC). The various divalent or trivalent metal ion-doped bismuth-based materials exhibit good ionic conductivity. Therefore, these materials are used as electrolytes in the SOFC. In this paper, the samples of (Bi0.92−x Ho0.03Er0.05)2O3 + (ZnO) x solutions with a 0 ≤ x ≤ 0.2 molar ratio are synthesized by the solid state reaction method. The detailed structural and electrical characterizations are investigated by using x-ray diffraction (XRD), alternating current electrochemical impedance spectroscopy, and scanning electron microscopy (SEM). The XRD patterns of all samples are indexed on a monoclinic symmetry with a P21/c space group. In addition, the rietveld parameters are determined by using the FullProf software program. The impedance measurements of the samples are obtained at the 1 Hz to 20 MHz frequency range. The impedance value of the pellets increases with temperature. Based on the impedance results, it is found that the contribution of grain (bulk) is more than a grain boundary in terms of conductivity, which permits the attribution of a grain boundary. The ionic conductivity decreases with an increasing amount of Zn contribution. The value of highest electrical conductivity among all samples is calculated as 0.358 S cm−1 at 800°C for undoped (Bi0.92Ho0.03Er0.05)2O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Satardekar, D. Montinaro, and V.M. Sglavo, Ceram. Int. 41, 9806 (2015).

    Article  Google Scholar 

  2. T.C. Kuo, Y.L. Kuo, and W.C.J. Wei, J. Eur. Ceram. Soc. 31, 3153 (2011).

    Article  Google Scholar 

  3. H. Ozlu Torun, S. Cakar, E. Ersoy, and O. Turkoglu, J. Therm. Anal. Calorim. 122, 525 (2015).

    Article  Google Scholar 

  4. A. Watanabe and M. Sekita, Solid State Ion. 176, 2429 (2005).

    Article  Google Scholar 

  5. T. Chou, L. Der Liu, and W.C.J. Wei, J. Eur. Ceram. Soc. 31, 3087 (2011).

    Article  Google Scholar 

  6. N. Jiang, E.D. Wachsman, and S.H. Jung, Solid State Ion. 150, 347 (2002).

    Article  Google Scholar 

  7. B.F.D. Mercurio and M. El Farissi, Solid State Ion. 39, 297 (1990).

    Article  Google Scholar 

  8. G. Meng, C. Chen, X. Han, P. Yang, and D. Peng, Solid State Ion. 28–30, 533 (1988).

    Article  Google Scholar 

  9. N. Portefaix, P. Conflant, J.C. Boivin, J.P. Wignacourt, and M. Drache, J. Solid State Chem. 226, 219 (1997)

  10. C.Y. Chen, J.C. Weng, J.H. Chen, S.H. Ma, K.H. Chen, T.L. Horng, C.Y. Tsay, C.J. Chang, C.K. Lin, and J.J. Wu, Powder Technol. 272, 316 (2015).

    Article  Google Scholar 

  11. Y.Z. Haiping, J. Zhang, and J. Wang, J. Rare Earths 24, 408 (2006).

    Article  Google Scholar 

  12. P. Shuk, Solid State Ion. 89, 179 (1996).

    Article  Google Scholar 

  13. M.J. Verkerk and A.J. Burggraaf, J. Electrochem. Soc. 128, 75 (1981).

    Article  Google Scholar 

  14. A. Watanabe, Solid State Ion. 3, 35 (1989).

    Article  Google Scholar 

  15. S.F. Wang, Y.F. Hsu, W.C. Tsai, and H.C. Lu, J. Power Sources 218, 106 (2012).

    Article  Google Scholar 

  16. N.A.S. Webster, C.D. Ling, C.L. Raston, and F.J. Lincoln, Solid State Ion. 179, 697 (2008).

    Article  Google Scholar 

  17. V. Fruth, A. Ianculescu, D. Berger, S. Preda, G. Voicu, E. Tenea, and M. Popa, J. Eur. Ceram. Soc. 26, 3011 (2006).

    Article  Google Scholar 

  18. J. Huang, F. Xie, C. Wang, and Z. Mao, Int. J. Hydrogen Energy 37, 877 (2012).

    Article  Google Scholar 

  19. G. Malmros, L. Fernholt, C.J. Ballhausen, U. Ragnarsson, S.E. Rasmussen, E. Sunde, and N.A. Sørensen, Acta Chem. Scand. 24, 384 (1970).

    Article  Google Scholar 

  20. K.E.S. AronWalsh, G.W. Watson, D.J. Payne, R.G. Edgell, J. Guo, P.A. Glans, and T. Learmonth, Phys. Rev. B 73, 235104 (2006).

    Article  Google Scholar 

  21. Y.Y.Y. Li and F. Yang, Appl. Surf. Sci. 358, 449 (2015).

    Article  Google Scholar 

  22. H.C. Wang, C.L. Wang, W.B. Su, J. Liu, Y. Zhao, H. Peng, J.L. Zhang, M.L. Zhao, J.C. Li, N. Yin, and L.M. Mei, Mater. Res. Bull. 45, 809 (2010).

    Article  Google Scholar 

  23. Y.Z.Y. Wang, J. Zhao, B. Zhou, X. Zhao, and Z. Wang, J. Alloys Compd. 592, 296 (2014).

    Article  Google Scholar 

  24. R.S. Levin and E.M. Roth, J. Res. Natl. Bur. Stand. 68, 189 (1964).

    Article  Google Scholar 

  25. P.M. Saffronov, G.M. Batog, V.N. Stepayuk, and T.V. Federov, Russ. J. Inorg. Chem. 16, 460 (1971).

    Google Scholar 

  26. W.G. Wong and J. Morris, Ceram. Bull. 53, 816 (1974).

    Google Scholar 

  27. D. Suvorov, J. Guha, and S. Kunej, J. Mater. Sci. 39, 911 (2004).

    Article  Google Scholar 

  28. J. Luo, R.J. Ball, and R. Stevens, J. Mater. Sci. 39, 235 (2004).

    Article  Google Scholar 

  29. J.E. Bauerle, J. Phys. Chem. Solids 30, 2657 (1969).

    Article  Google Scholar 

  30. A. Arabaci, Ceram. Int. 41, 5836 (2015).

    Article  Google Scholar 

  31. S. Le, J. Zhang, X. Zhu, J. Zhai, and K. Sun, J. Power Sources 232, 219 (2013).

    Article  Google Scholar 

  32. S. Gupta and K. Singh, Solid State Ion. 278, 233 (2015).

    Article  Google Scholar 

  33. B. Aktas, S. Tekeli, and M. Kucuktuvek, J. Mater. Eng. Perform. 23, 349 (2014).

    Article  Google Scholar 

  34. R. Kant, K. Singh, and O. Pandey, Int. J. Hydrogen Energy 33, 455 (2008).

    Article  Google Scholar 

  35. S. Sanna, V. Esposito, C. Graves, J. Hjelm, J.W. Andreasen, and N. Pryds, Solid State Ion. 266, 13 (2014).

    Article  Google Scholar 

  36. N.M. Sammes, G.A. Tompsett, H. Näfe, and F. Aldinger, J. Eur. Ceram. Soc. 19, 1801 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support provided by the Research and Application Center for Hydrogen Technologies, Suleyman Demirel University, Turkey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İ. Ermiş.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ermiş, İ., Çorumlu, V., Sertkol, M. et al. Microstructure and Electrical Conductivity of ZnO Addition on the Properties of (Bi0.92Ho0.03Er0.05)2O3 . J. Electron. Mater. 45, 5860–5866 (2016). https://doi.org/10.1007/s11664-016-4799-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4799-4

Keywords

Navigation