Journal of Electronic Materials

, Volume 45, Issue 11, pp 5877–5884 | Cite as

Adhesion, Modulus and Thermal Conductivity of Porous Epoxy Film on Silicon Wafers

Article

Abstract

An 8 μm epoxy film deposited on a 350 μm Si (100) Si wafer with a 0.4 μm Au transducer film deposited on top of the polymer film was used to evaluate the thermal conductivity, the modulus of the porous film, and the initiation of spalling upon laser beam irradiation on the back side of the Si wafer. The polymer films were characterized for pore microstructure using scanning electron microscopy and energy dispersive spectrometry. The polymer films were characterized using transient thermo reflectance (TTR) with laser beams illuminating the Au layer. The TTR signal from the polymer film showed only the thermal component and was characteristic of variations associated with thermal conduction into the film. To induce spalling, the back side was illuminated with a Nd-YAG laser beam with a 532 nm wavelength, pulse energy density 1.8 J/cm2, and a repetition rate of 10 Hz for 10 s in conjunction with TTR measurements on the front side. The TTR signal from the polymer film subjected to laser beam incidence from the backside of the Si wafer showed both the thermal and the acoustic components. The acoustic component was used to detect the initial stages of spalling or delamination. The acoustic oscillations were modeled using a modified wave equation to determine the velocity of sound and the modulus of the film. The results were also used to determine the effect of porosity on the modulus of the polymer film. The TTR signal was found to be very sensitive to detection of delamination without complete separation of the film.

Keywords

Adhesion porous polymer modulus thermal conductivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Niklaus, G. Stemme, J.-Q. Lu, and R.J. Guttman, J. Appl. Phys. 99, 031101 (2006).CrossRefGoogle Scholar
  2. 2.
    S.D. Brown, J. Adhes. Sci. Technol. 8, 687 (1994).CrossRefGoogle Scholar
  3. 3.
    ASTM E 1876, Standard Test Method for Dynamic Young’s Modulus, Shear Modulus and Poisson’s Ratio by Impulse Excitation (West Conshohocken: Annual Book of ASTM International, 2015).Google Scholar
  4. 4.
    M. Radovic, E. Lara-Curzio, and L. Riester, Mater. Sci. Eng. 368A, 56 (2004).CrossRefGoogle Scholar
  5. 5.
    P.A. Bosomworth, J. ASTM Int. 7, JAI102953 (2010).CrossRefGoogle Scholar
  6. 6.
    A.S. Maxwell, S. Owen-Jones, and N.M. Jennet, Rev. Sci. Instrum. 75, 970 (2004).CrossRefGoogle Scholar
  7. 7.
    K. Jagannadham, Metall. Mater. Trans. A 46, 229 (2015).CrossRefGoogle Scholar
  8. 8.
    G. Youssef, C. Moulet, and M.S. Goorsky, J. Appl. Phys. 111, 094902 (2012).CrossRefGoogle Scholar
  9. 9.
    A. Jain, V. Gupta, and S.N. Basu, Acta Mater. 53, 3147 (2005).CrossRefGoogle Scholar
  10. 10.
    S.S.V. Kandula, C.D. Hartfield, P.H. Geubelle, and N.R. Sottos, Thin Solid Films 516, 7627 (2008).CrossRefGoogle Scholar
  11. 11.
    A. Federov, R. van Tijum, W.P. Vellinga, and JThM De Hosson, J. Appl. Phys. 101, 043520 (2007).CrossRefGoogle Scholar
  12. 12.
    A. Fedorov, W.P. Vellinga, and JThM De Hosson, J. Appl. Phys. 103, 103523 (2008).CrossRefGoogle Scholar
  13. 13.
    K. Jagannadham, J. Vac. Sci. Technol. A 32, 051101 (2014).CrossRefGoogle Scholar
  14. 14.
    K. Jagannadham, J. Vac. Sci. Technol. 33, 031514 (2015).CrossRefGoogle Scholar
  15. 15.
    K. Jagannadham, IEEE. Trans. Electron Device 61, 1950 (2014).CrossRefGoogle Scholar
  16. 16.
    M.A. Panzer, G. Zhang, D. Mann, X. Hu, E. Pop, H. Dai, and K.E. Goodson, J. Heat Trans. 130, 052401 (2008).CrossRefGoogle Scholar
  17. 17.
    W.A. Harrison, Solid State Theory (New York: Dover Publications Inc, 1979), p. 263.Google Scholar
  18. 18.
    J.B. Scarborough, Numerical Mathematical Analysis, 4th ed. (Oxford: Oxford University Press, 1958), p. 414.Google Scholar
  19. 19.
    J.P. Hirth and J. Lothe, Theory of Dislocations, 2nd ed. (Malabar: Krieger Publishing Company, 1992), p. 183.Google Scholar
  20. 20.
    A.E.H. Love, A Treatise on Mathematical Theory of Elasticity (New York: Dover Publications, 1944), p. 428.Google Scholar
  21. 21.
    J.R. Hutchinson and C.M. Percival, J. Acoust. Soc. Am. 44, 1204 (1968).CrossRefGoogle Scholar
  22. 22.
    C.M. Percival and J.A. Cheney, Exp. Mech. 9, 49 (1969).CrossRefGoogle Scholar
  23. 23.
    A. Smith, S.J. Wilkinson, and W.N. Reynolds, J. Mater. Sci. 9, 547 (1974).CrossRefGoogle Scholar
  24. 24.
    M.A. Al-Nasassrah, F. Podczeck, and J.M. Newton, Eur. J. Pharm. Biopharm. 46, 31 (1998).CrossRefGoogle Scholar
  25. 25.
    M. Brown and K. Jaganandham, J. Electron. Mater. 44, 2624 (2014).CrossRefGoogle Scholar
  26. 26.
    E. Chapalle, B. Garnier, and B. Bourouga, Int. J. Therm. Sci. 48, 2221 (2009).CrossRefGoogle Scholar
  27. 27.
    J.J. Fuller and E.E. Marotta, J. Thermophys. Heat Trans. 14, 283 (2000).CrossRefGoogle Scholar
  28. 28.
    J.J. Fuller and E.E. Marotta, J. Thermophys. Heat Trans. 15, 228 (2001).CrossRefGoogle Scholar
  29. 29.
    M. Bahrami, M.H. Yovanovich, and E.E. Marotta, J. Electron. Packag. 128, 23 (2006).CrossRefGoogle Scholar
  30. 30.
    A. Birch, W.R.G. Kemp, P.G. Klemens, and R.J. Tainsh, Aust. J. Phys. 12, 455 (1959).CrossRefGoogle Scholar
  31. 31.
    E.T. Swartz and R.O. Pohl, Rev. Mod. Phys. 61, 605 (1989).CrossRefGoogle Scholar
  32. 32.
    R.M. Spriggs, J. Am. Ceram. Soc. 44, 628 (1961).CrossRefGoogle Scholar
  33. 33.
    M.E. Siemens, Q. Li, R. Yang, K.A. Nelson, E.H. Anderson, M.M. Murnane, and H.C. Kapteyn, Nat. Mater. 9, 26 (2010).CrossRefGoogle Scholar
  34. 34.
    M.E. Siemens, Q. Li, M.M. Murnane, H.C. Kapteyn, R. Yang, E.H. Anderson, and K.A. Nelson, Appl. Phys. Lett. 94, 093103 (2009).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  1. 1.Materials Science and EngineeringNorth Carolina State UniversityRaleighUSA

Personalised recommendations