Skip to main content

Electrical Conductivity, Thermal Behavior, and Seebeck Coefficient of Conductive Films for Printed Thermoelectric Energy Harvesting Systems

Abstract

Printed electronics is being explored as a rapid, facile means for manufacturing thermoelectric generators (TEGs) that can recover useful electrical energy from waste heat. This work examines the relevant electrical conductivity, thermal resistance, thermovoltage, and Seebeck coefficient of printed films for use in such printed flexible TEGs. The thermoelectric performance of TEGs printed using commercially relevant nickel, silver, and carbon inks is evaluated. The microstructure of the printed films is investigated to better understand why the electrical conductivity and Seebeck coefficient are degraded. Thermal conduction is shown to be relatively insensitive to the type of metalized coating and nearly equivalent to that of an uncoated polymer substrate. Of the commercially available conductive ink materials examined, carbon–nickel TEGs are shown to exhibit the highest thermovoltage, with a value of 10.3 μV/K. However, silver–nickel TEGs produced the highest power generation of 14.6 μW [from 31 junctions with temperature difference (ΔT) of 113°C] due to their low electrical resistance. The voltage generated from the silver–nickel TEG was stable under continuous operation at 275°C for 3 h. We have also demonstrated that, after a year of storage in ambient conditions, these devices retain their performance. Notably, the electrical conductivity and Seebeck coefficient measured for individual materials were consistent with those measured from actual printed TEG device structures, validating the need for further fundamental materials characterization to accelerate flexible TEG device optimization.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    I. Johnson, T. William, W. Choate, and A. Amber Davidson, Waste heat recovery: technology and opportunities in US industry (US Department of Energy, 2008), http://www1. eere.energy.gov/manufacturing/intensiveprocesses/pdfs/wa ste_heat_recovery.pdf. Accessed 05 December 2015.

  2. 2.

    G.J. Snyder, Electrochem. Soc. Interface 17, 54 (2008).

    Google Scholar 

  3. 3.

    S. Jo, M. Kim, M. Kim, and Y. Kim, Electron. Lett. 48, 1015 (2012).

    Article  Google Scholar 

  4. 4.

    S.J. Kim, J.H. We, and B.J. Cho, Energy Environ. Sci. 7, 1959 (2014).

    Article  Google Scholar 

  5. 5.

    Y. Du, K. Cai, S. Chen, H. Wang, S.Z. Shen, R. Donelson, and T. Lin, Sci. Rep. 5, 6411 (2015).

    Article  Google Scholar 

  6. 6.

    D. Madan, Z. Wang, A. Chen, R. Winslow, P.K. Wright, and J.W. Evans, Appl. Phys. Lett. 104, 013902 (2014).

    Article  Google Scholar 

  7. 7.

    D. Madan, Z. Wang, A. Chen, P.K. Wright, and J.W. Evans, ACS Appl. Mater. Interfaces 5, 11872 (2013).

    Article  Google Scholar 

  8. 8.

    Z. Lu, M. Layani, X. Zhao, L.P. Tan, T. Sun, S. Fan, Q. Yan, S. Magdassi, and H.H. Hng, Small 10, 3551 (2014).

    Article  Google Scholar 

  9. 9.

    Z. Cao, E. Koukharenko, R. Torah, J. Tudor, and S. Beeby, J. Phys. 01, 2014 (2016).

    Google Scholar 

  10. 10.

    J.H. We, S.J. Kim, G.S. Kim, and B.J. Cho, J. Alloys Compd. 552, 107 (2013).

    Article  Google Scholar 

  11. 11.

    S.J. Kim, J.H. We, J.S. Kim, G.S. Kim, and B.J. Cho, J. Alloys Compd. 582, 177 (2014).

    Article  Google Scholar 

  12. 12.

    S.K. Yee, S. LeBlanc, K.E. Goodson, and C. Dames, Energy Environ. Sci. 6, 2561 (2013).

    Article  Google Scholar 

  13. 13.

    S. LeBlanc, S.K. Yee, M.L. Scullin, C. Dames, and K.E. Goodson, Renew. Sust. Energy Rev. 32, 313 (2014).

    Article  Google Scholar 

  14. 14.

    G.G. Yadav, J.A. Susoreny, G. Zhang, H. Yang, and Y. Wu, Nanoscale 3, 3555 (2011).

    Article  Google Scholar 

  15. 15.

    T.M. Seeberg, A. Royset, S. Jahren, and F. Strisland, EMBC: Annual International Conference of the IEEE (2011), p. 3278.

  16. 16.

    S. Dalola, V. Ferrari, G. Faglia, E. Comini, M. Ferroni, C. Soldano, D. Zappa, and G. Sberveglieri, in Sensors and Microsystems, ed. by M. Ferrari (New York: Springer, 2014), p. 3. doi:10.1007/978-3-319-00684-0.

  17. 17.

    D. AgataSkwarek and P. Markowski, Microelectron. Int. 31, 176 (2014).

    Article  Google Scholar 

  18. 18.

    K. Suemori, S. Hoshino, and T. Kamata, Appl. Phys. Lett. 103, 153902 (2013).

    Article  Google Scholar 

  19. 19.

    Q. Zhang, Y. Sun, W. Xu, and D. Zhu, Adv. Mater. 26, 6829 (2014).

    Article  Google Scholar 

  20. 20.

    W. Lee, C.T. Hong, O.H. Kwon, Y. Yoo, Y.H. Kang, J.Y. Lee, S.Y. Cho, K.-S. Jang, and A.C.S. Appl, Mater. Interfaces 7, 6550 (2015).

    Article  Google Scholar 

  21. 21.

    J.W. Fergus, J. Eur. Ceram. Soc. 32, 525 (2012).

    Article  Google Scholar 

  22. 22.

    F. Jiao, C.-A. Di, Y. Sun, P. Sheng, W. Xu, and D. Zhu, Phil. Trans. R. Soc. A Math. Phys. Eng. Sci. 372, 20130008 (2014).

    Article  Google Scholar 

  23. 23.

    Q. Wei, M. Mukaida, K. Kirihara, Y. Naitoh, and T. Ishida, RSC Adv. 4, 28802 (2014).

    Article  Google Scholar 

  24. 24.

    DuPont, 5064H silver conductor (DuPont, 2009), www.dupont.com/content/dam/dupont/products…/5064H.pdf. Accessed 10 December 2015

  25. 25.

    S. Yee, Measurements-electronic properties (www.gatech.edu, 2005), https://sites.google.com/site/yeelabgatech/Mea surements/electrical-properties. Accessed 6 December 2015.

  26. 26.

    K. Ankireddy, S. Vunnam, J. Kellar, and W. Cross, J. Mater. Chem. C 1, 572 (2013).

    Article  Google Scholar 

  27. 27.

    MatWeb. Material property search (MatWeb, 1996–2016), http://www.matweb.com. Accessed 7 December 2015.

  28. 28.

    C.J.M. Lasance, Electronics Cooling (2006), http://www.electronics-cooling.com/2006/11/the-seebeck-coefficient. Accessed 5 December 2015.

  29. 29.

    B.C. Gundrum, D.G. Cahill, and R.S. Averback, Phys. Rev. B 72, 245426 (2005).

    Article  Google Scholar 

  30. 30.

    T.L. Bergman, F.P. Incropera, and A.S. Lavine, Fundamentals of Heat and Mass Transfer, 7th ed. (Hoboken: Wiley, 2011), p. 22.

    Google Scholar 

  31. 31.

    DuPont, Kapton HN polyimide film (Dupont, 2011), http://www.dupont.com/content/dam/assets/products-and-services/membranes-films/assets/DEC-Kapton-HN-datasheet.pdf. Accessed 10 December 2015.

  32. 32.

    F. Kreith, R. Manglik, and M. Bohn, Principles of Heat Transfer, 7th ed. (Stamford: Cengage Learning, 2010), p. 28.

    Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from North Carolina State University, Raleigh, NC, USA through the 2015 Chancellor Innovation Fund. Authors thank Dr. Philip Bradford (NC State University) for help in sintering the printed samples.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Krishnamraju Ankireddy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 279 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ankireddy, K., Menon, A.K., Iezzi, B. et al. Electrical Conductivity, Thermal Behavior, and Seebeck Coefficient of Conductive Films for Printed Thermoelectric Energy Harvesting Systems. Journal of Elec Materi 45, 5561–5569 (2016). https://doi.org/10.1007/s11664-016-4780-2

Download citation

Keywords

  • Printed thermoelectric generators
  • energy harvesting
  • electrical conductivity
  • thermal conductivity
  • Seebeck coefficient
  • conductive films