Journal of Electronic Materials

, Volume 45, Issue 11, pp 5540–5545 | Cite as

Improvement in Thermoelectric Properties by Tailoring at In and Te Site in In2Te5



We study the role of substitutions at In and Te site in the thermoelectric behavior of In2Te5. Single crystals with compositions In2(Te1−x Se x )5 (x = 0, 0.05, 0.10) and Fe0.05In1.95(Te0.90Se0.10)5 were prepared using a modified Bridgman–Stockbarger technique. Electrical and thermal transport properties of these single crystals were measured in the temperature range of 6 K to 395 K. A substantial decrease in the thermal conductivity was observed in Fe-substituted samples, attributed to enhanced phonon scattering at point defects. Marked enhancement in the Seebeck coefficient S along with concomitant suppression of the electrical resistivity ρ was observed in Se-substituted single crystals. An overall enhancement of the thermoelectric figure of merit (zT) by a factor of 310 was observed in single-crystal Fe0.05In1.95(Te0.90Se0.10)5 compared with single crystals of the parent material In2Te5.


Thermoelectric thermal conductivity electrical conductivity Seebeck coefficient figure of merit single crystal 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to acknowledge the Indian Department of Science and Technology for partial support through project IR/S2/PU-10/2006. A.D.T. would like to acknowledge partial support from the Center for Energy and Environment, Indian Institute of Technology Patna (IITP).


  1. 1.
    J.R. Sootsman, D.Y. Chung, and M.G. Kanatzidis, Angew. Chem. Int. Ed. 48, 8616 (2009).CrossRefGoogle Scholar
  2. 2.
    B. Yang, H. Ahuja, and T.N. Tran, HVAC R Res. 14, 635 (2008).CrossRefGoogle Scholar
  3. 3.
    G.S. Nolas, J. Sharp, and H.J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments (Springer, New York, 2001).Google Scholar
  4. 4.
    C. Wood, Rep. Prog. Phys. 51, 459 (1988).CrossRefGoogle Scholar
  5. 5.
    T.M. Tritt, M. Kanatzidis, G. Mahan, and H.B. Lyon, Mater. Res. Soc. Symp. Proc. 478 (1997).Google Scholar
  6. 6.
    T. Hendricks and W.T. Choate, Engineering Scoping Study of Thermoelectric Generator Systems for Industrial Waste Heat Recovery (US Department of Energy, Pacific Northwest, 2006).Google Scholar
  7. 7.
    J. Yang, Proceedings of 24th International Conference on Thermoelectrics, p. 155 (2005).Google Scholar
  8. 8.
    X. Shi, J.Y. Cho, J.R. Salvador, J. Yang, and H. Wang, Appl. Phys. Lett. 96, 162108 (2010).CrossRefGoogle Scholar
  9. 9.
    G.H. Zhu, Y.C. Lan, H. Wang, G. Joshi, Q. Hao, G. Chen, and Z.F. Ren, Phys. Rev. B 83, 115201 (2011).CrossRefGoogle Scholar
  10. 10.
    J.S. Rhyee, K.H. Lee, S.M. Lee, E. Cho, S. Kim, E. Lee, Y.S. Kwon, J.H. Shim, and G. Kotliar, Nature 459, 965 (2009).CrossRefGoogle Scholar
  11. 11.
    J.S. Rhyee and J.H. Kim, Materials 8, 1283 (2015).CrossRefGoogle Scholar
  12. 12.
    L.D. Zhao, S.H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, and G. Kanatzidis, Nature 508, 303 (2014).CrossRefGoogle Scholar
  13. 13.
    M.M. Nassary, M. Dongal, M.K. Gerges, and M.A. Sebage, Phys. Stat. Sol. (a) 199, 464 (2003).CrossRefGoogle Scholar
  14. 14.
    A.V. Sanchela, A.D. Thakur, and C.V. Tomy, AIP Conf. Proc. 1591, 1392 (2014).CrossRefGoogle Scholar
  15. 15.
    H. Mun, K.H. Lee, S.J. Kim, J.Y. Kim, J.H. Lee, J.H. Lim, H.J. Park, J.W. Roh, and S.W. Kim, Materials 8, 959 (2015).CrossRefGoogle Scholar
  16. 16.
    X. Liang and A.C.S. Appl, Mater. Interfaces 7, 7927 (2015).CrossRefGoogle Scholar
  17. 17.
    A.K. Yadav (Ph.D. thesis, IIT Bombay, 2014).Google Scholar
  18. 18.
    C.B. Huang, Y.B. Ni, H.X. Wu, Z.Y. Wang, X.D. Cheng, and R.C. Xiao, J. Inorg. Mater. 29 (2014).Google Scholar
  19. 19.
    L.M. Caroline (Ph.D. thesis, Chapter 1, Bharath University, 2010).Google Scholar
  20. 20.
    P. Gille, M. Muhlberg, L. Parthier, and P. Rudolph, Cryst. Res. Technol. 19, 881 (1984).CrossRefGoogle Scholar
  21. 21.
    S.O. Kasap, Principles of Electronic Materials and Devices, 3rd ed. (McGraw-Hill, New York, 2005).Google Scholar
  22. 22.
    G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).CrossRefGoogle Scholar
  23. 23.
    T.M. Tritt, Thermal Conductivity, Theory, Properties and Applications (Kluwer Academic/Plenum, New York, 2004).Google Scholar
  24. 24.
    C. Kittel, Introduction to Solid State Physics, 7th ed. (Wiley, New York, 1996).Google Scholar
  25. 25.
    E.F. Westrum and N. Komada, Thermochim. Acta 109, 11 (1986).CrossRefGoogle Scholar
  26. 26.
    Y. Du, Z.X. Cheng, S.X. Dou, X.L. Wang, H.Y. Zhao, and H. Kimura, Appl. Phys. Lett. 97, 122502 (2010).CrossRefGoogle Scholar
  27. 27.
    W. Zhixin, S. Bin, and L. Jinbin, Trans. Nonferrous Met. Soc. China 21, 1309 (2011).CrossRefGoogle Scholar
  28. 28.
    I.K. Dimitrov, M.E. Manley, S.M. Shapiro, J. Yang, W. Zhang, L.D. Chen, Q. Jie, G. Ehlers, A. Podlesnyak, J. Camacho, and Qiang Li, Phys. Rev. B 82, 174301 (2010).Google Scholar
  29. 29.
    H. Liu, J. Yang, X. Shi, S.A. Danilkin, D. Yu, C. Wang, W. Zhang, and L. Chen, J. Materiomics (2016), http://

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  • Anup V. Sanchela
    • 1
  • Ajay D. Thakur
    • 2
    • 3
  • C. V. Tomy
    • 1
  1. 1.Department of PhysicsIndian Institute of Technology BombayMumbaiIndia
  2. 2.School of Basic SciencesIndian Institute of Technology PatnaPatnaIndia
  3. 3.Centre for Energy and EnvironmentIndian Institute of Technology PatnaPatnaIndia

Personalised recommendations