Abstract
Co-doped ZnS thin films have been grown on glass substrates using solution-processing and dip-coating techniques, and the impact of the Co doping level (0% to 5%) and film thickness on certain characteristics examined. X-ray diffraction study revealed that all the films possessed hexagonal crystal structure. Energy-dispersive x-ray analysis confirmed presence of Zn, Co, and S in the samples. Scanning electron microscopy showed that the film surface was homogeneous and dense with some cracks and spots. X-ray photoelectron spectroscopy confirmed introduction and integration of Co2+ ions into the ZnS thin films. Compared with undoped ZnS, optical studies indicated a reduction in optical bandgap energy (E g) while the refractive index (n), extinction coefficient (k), and dielectric constants (ε 1, ε 2) increased with film thickness (t) and Co doping level (except for 5%). Photoluminescence spectra showed enhanced luminescence intensity as the Co concentration was increased, while the dependence on t showed an initial increase followed by a decrease. The origin of the observed low-temperature (5 K and 100 K) ferromagnetic order may be related to point defects such as zinc vacancies, zinc interstitials, and sulfide vacancies or to the grain-boundary effect.
This is a preview of subscription content, access via your institution.
References
B. Poornaprakash, D. Amaranatha Reddy, G. Murali, N. Madhusudhana Rao, R.P. Vijayalakshmi, and B.K. Reddy, J. Alloy. Compd. 577, 79 (2013).
A. Goktas, F. Aslan, E. Yasar, and I.H. Mutlu, J. Mater. Sci.: Mater. Electron. 23, 1361 (2012).
S.P. Patel, J.C. Pivin, A.K. Chawla, R. Chandra, D. Kanjilal, and L. Kumar, J. Magn. Magn. Mater. 323, 2734 (2011).
A. Goktas, I.H. Mutlu, Y. Yamada, and E. Celik, J. Alloy. Compd. 553, 259 (2013).
N. Kumbhojkar, V.V. Nikesh, A. Kshirsagar, and S. Mahamuni, J. Appl. Phys. 88, 6260 (2000).
N. Goswami and P. Sen, J. Nanopart. Res. 9, 513 (2007).
A. Goktas, I.H. Mutlu, and Y. Yamada, Superlatt. Microstruct. 57, 139 (2013).
T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000).
J. Xie, J. Magn. Magn. Mater. 322, L37 (2010).
Y. Li, Z. Zhou, P. Jin, Y. Chen, S.B. Zhang, and Z. Chen, J. Phys. Chem. C 114, 12099 (2010).
S. Sambasivam, D.P. Joseph, J.G. Lin, and C. Venkateswaran, J. Solid State Chem. 182, 2598 (2009).
G. Ren, Z. Lin, C. Wang, W. Liu, J. Zhang, F. Huang, and J. Liang, Nanotechnology 18, 035705 (2007).
K. Sato and H. Katayama-Yoshida, Phys. Status Solidi B 229, 673 (2002).
H.C. Ong and R.P.H. Chang, Appl. Phys. Lett. 79, 3612 (2001).
R. Sarkar, C.S. Tiwary, P. Kumbhakar, and A.K. Mitra, Physica B 404, 3855 (2009).
S.D. Sartale, B.R. Sankapal, M. Lux-Steiner, and A. Ennaoui, Thin Solid Films 480, 168 (2005).
A. Ennaoui, W. Eisele, M. Lux-Steiner, T.P. Niesen, and F. Karg, Thin Solid Films 431, 335 (2003).
R.N. Bhattacharya and K. Rammanathan, Sol. Energy 77, 679 (2004).
I. Polat, S. Aksu, M. Altunbaş, and E. Bacaksız, Mater. Chem. Phys. 130, 800 (2011).
A.I. Inamdar, S. Lee, D. Kim, K.V. Gurav, J.H. Kim, H. Im, W. Jung, and H. Kim, Thin Solid Films 537, 36 (2013).
C.S. Pathak, M.K. Mandal, and V. Agarwala, Mater. Sci. Semicond. Process. 16, 467 (2013).
N. Karar and H. Chander, J. Nanosci. Nanotechnol. 5, 1498 (2005).
R.N. Bhargava, D. Gallager, X. Hong, and A. Nurmikko, Phys. Rev. Lett. 72, 416 (1994).
Nie Eryong, Liu Donglai, Zhang Yunsen, Bai Xue, Yi Liang, Jin Yong, Jiao Zhifeng, and Sun Xiaosong, Appl. Surf. Sci. 257, 8762 (2011).
P. Yang, M. LuE, D. XuE, D. Yuana, C. Songa, and G. Zhoub, J. Phys. Chem. Solids 62, 1181 (2001).
R.D. Shannon, Acta Crystallogr. A 32, 751 (1976).
A. Goktas, F. Aslan, and I.H. Mutlu, J. Alloy. Compd. 615, 765 (2014).
L. Wei, Z. Li, and W.F. Zhang, Appl. Surf. Sci. 255, 4992 (2009).
S.W. Shin, S.R. Kang, J.H. Yun, A.V. Moholkar, J.H. Moon, J.Y. Lee, and J.H. Kim, Sol. Energy Mater. Sol. Cells 95, 856 (2011).
W.S. Ni, Y.J. Lin, C.J. Liu, Y.W. Yang, and L. Horng, J. Alloy. Compd. 556, 178 (2013).
B.J. Tan, K.J. Klabunde, and P.M.A. Sherwood, J. Am. Chem. Soc. 113, 855 (1991).
Y. Okamoto, T. Imanaka, and S. Teranishi, J. Catal. 65, 448 (1980).
M. El-Hagary, M. Emam-Ismail, E.R. Shaaban, A. Al-Rashidi, and S. Althoyaib, Mater. Chem. Phys. 132, 581 (2012).
A. Goktas, I.H. Mutlu, and J. Sol-Gel, Sci. Technol. 69, 120 (2014).
A. Goktas, Appl. Surf. Sci. 340, 151 (2015).
M.S. Akhtar, Y.G. Alghamdi, M.A. Malik, R.M.A. Khalil, S. Riazb, and S. Naseemb, J. Mater. Chem. C 3, 6755 (2015).
L.-J. Tang, G.-F. Huang, Y. Tian, W.-Q. Huang, M.-G. Xia, C. Jiao, J.-P. Long, and S.-Q. Zhan, Mater. Lett. 100, 237 (2013).
X. Ma and Z. Wang, Microelectron. Eng. 88, 3168 (2011).
J. Dreyhsig, K. Klein, H.-E. Gumlich, and J.W. Allen, Solid State Commun. 85, 19 (1994).
P. Koidl, Phys. Rev. B 15, 2492 (1977).
T. Badapanda, S.K. Rout, L.S. Cavalcante, J.C. Sczancoski, S. Panigrahi, E. Longo, and M. Siu Li, J. Phys. D Appl. Phys. 42, 175414 (2009).
S. Singh and P. Chakrabarti, Adv. Sci. Eng. Med. 5, 677 (2013).
S. Vyas, P. Giri, S. Singh, and P. Chakrabarti, J. Electron. Mater. 44, 3401 (2015).
F.L. Xian, L.H. Xu, X.X. Wang, and X.Y. Li, Cryst. Res. Technol. 47, 423 (2012).
J. Bian, X. Li, L. Chen, and Q. Yao, Chem. Phys. Lett. 393, 256 (2004).
C. Vatankhah, S. Jafargholinejad, S. Karami, and R. Vatankhah, Aust. J. Basic Appl. Sci. 4, 4423 (2010).
M.T. Le and J. Lee, Geosyst. Eng. 16, 231 (2013).
P.H. Borse, N. Deshmukh, R.F. Shinde, S.K. Date, and S.K. Kulakarni, J. Mater. Sci. 34, 6087 (1999).
C.J. Chen, W. Gao, Z.F. Qin, W. Hu, and M. Qu, J. Appl. Phys. 70, 6277 (1991).
A. Lewicki, A.I. Schindler, J.K. Furdyna, and W. Giriat, Phys. Rev. B 40, 2379 (1989).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Goktas, A., Mutlu, İ. Structural, Optical, and Magnetic Properties of Solution-Processed Co-Doped ZnS Thin Films. J. Electron. Mater. 45, 5709–5720 (2016). https://doi.org/10.1007/s11664-016-4771-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11664-016-4771-3
Keywords
- Co-doped ZnS
- solution processing
- photoluminescence
- refractive index
- dielectric constant
- paramagnetic/ferromagnetic behavior