Skip to main content
Log in

Structural, Optical, and Magnetic Properties of Solution-Processed Co-Doped ZnS Thin Films

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Co-doped ZnS thin films have been grown on glass substrates using solution-processing and dip-coating techniques, and the impact of the Co doping level (0% to 5%) and film thickness on certain characteristics examined. X-ray diffraction study revealed that all the films possessed hexagonal crystal structure. Energy-dispersive x-ray analysis confirmed presence of Zn, Co, and S in the samples. Scanning electron microscopy showed that the film surface was homogeneous and dense with some cracks and spots. X-ray photoelectron spectroscopy confirmed introduction and integration of Co2+ ions into the ZnS thin films. Compared with undoped ZnS, optical studies indicated a reduction in optical bandgap energy (E g) while the refractive index (n), extinction coefficient (k), and dielectric constants (ε 1, ε 2) increased with film thickness (t) and Co doping level (except for 5%). Photoluminescence spectra showed enhanced luminescence intensity as the Co concentration was increased, while the dependence on t showed an initial increase followed by a decrease. The origin of the observed low-temperature (5 K and 100 K) ferromagnetic order may be related to point defects such as zinc vacancies, zinc interstitials, and sulfide vacancies or to the grain-boundary effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Poornaprakash, D. Amaranatha Reddy, G. Murali, N. Madhusudhana Rao, R.P. Vijayalakshmi, and B.K. Reddy, J. Alloy. Compd. 577, 79 (2013).

    Article  Google Scholar 

  2. A. Goktas, F. Aslan, E. Yasar, and I.H. Mutlu, J. Mater. Sci.: Mater. Electron. 23, 1361 (2012).

    Google Scholar 

  3. S.P. Patel, J.C. Pivin, A.K. Chawla, R. Chandra, D. Kanjilal, and L. Kumar, J. Magn. Magn. Mater. 323, 2734 (2011).

    Article  Google Scholar 

  4. A. Goktas, I.H. Mutlu, Y. Yamada, and E. Celik, J. Alloy. Compd. 553, 259 (2013).

    Article  Google Scholar 

  5. N. Kumbhojkar, V.V. Nikesh, A. Kshirsagar, and S. Mahamuni, J. Appl. Phys. 88, 6260 (2000).

    Article  Google Scholar 

  6. N. Goswami and P. Sen, J. Nanopart. Res. 9, 513 (2007).

    Article  Google Scholar 

  7. A. Goktas, I.H. Mutlu, and Y. Yamada, Superlatt. Microstruct. 57, 139 (2013).

    Article  Google Scholar 

  8. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000).

    Article  Google Scholar 

  9. J. Xie, J. Magn. Magn. Mater. 322, L37 (2010).

    Article  Google Scholar 

  10. Y. Li, Z. Zhou, P. Jin, Y. Chen, S.B. Zhang, and Z. Chen, J. Phys. Chem. C 114, 12099 (2010).

    Article  Google Scholar 

  11. S. Sambasivam, D.P. Joseph, J.G. Lin, and C. Venkateswaran, J. Solid State Chem. 182, 2598 (2009).

    Article  Google Scholar 

  12. G. Ren, Z. Lin, C. Wang, W. Liu, J. Zhang, F. Huang, and J. Liang, Nanotechnology 18, 035705 (2007).

    Article  Google Scholar 

  13. K. Sato and H. Katayama-Yoshida, Phys. Status Solidi B 229, 673 (2002).

    Article  Google Scholar 

  14. H.C. Ong and R.P.H. Chang, Appl. Phys. Lett. 79, 3612 (2001).

    Article  Google Scholar 

  15. R. Sarkar, C.S. Tiwary, P. Kumbhakar, and A.K. Mitra, Physica B 404, 3855 (2009).

    Article  Google Scholar 

  16. S.D. Sartale, B.R. Sankapal, M. Lux-Steiner, and A. Ennaoui, Thin Solid Films 480, 168 (2005).

    Article  Google Scholar 

  17. A. Ennaoui, W. Eisele, M. Lux-Steiner, T.P. Niesen, and F. Karg, Thin Solid Films 431, 335 (2003).

    Article  Google Scholar 

  18. R.N. Bhattacharya and K. Rammanathan, Sol. Energy 77, 679 (2004).

    Article  Google Scholar 

  19. I. Polat, S. Aksu, M. Altunbaş, and E. Bacaksız, Mater. Chem. Phys. 130, 800 (2011).

    Article  Google Scholar 

  20. A.I. Inamdar, S. Lee, D. Kim, K.V. Gurav, J.H. Kim, H. Im, W. Jung, and H. Kim, Thin Solid Films 537, 36 (2013).

    Article  Google Scholar 

  21. C.S. Pathak, M.K. Mandal, and V. Agarwala, Mater. Sci. Semicond. Process. 16, 467 (2013).

    Article  Google Scholar 

  22. N. Karar and H. Chander, J. Nanosci. Nanotechnol. 5, 1498 (2005).

    Article  Google Scholar 

  23. R.N. Bhargava, D. Gallager, X. Hong, and A. Nurmikko, Phys. Rev. Lett. 72, 416 (1994).

    Article  Google Scholar 

  24. Nie Eryong, Liu Donglai, Zhang Yunsen, Bai Xue, Yi Liang, Jin Yong, Jiao Zhifeng, and Sun Xiaosong, Appl. Surf. Sci. 257, 8762 (2011).

    Article  Google Scholar 

  25. P. Yang, M. LuE, D. XuE, D. Yuana, C. Songa, and G. Zhoub, J. Phys. Chem. Solids 62, 1181 (2001).

    Article  Google Scholar 

  26. R.D. Shannon, Acta Crystallogr. A 32, 751 (1976).

    Article  Google Scholar 

  27. A. Goktas, F. Aslan, and I.H. Mutlu, J. Alloy. Compd. 615, 765 (2014).

    Article  Google Scholar 

  28. L. Wei, Z. Li, and W.F. Zhang, Appl. Surf. Sci. 255, 4992 (2009).

    Article  Google Scholar 

  29. S.W. Shin, S.R. Kang, J.H. Yun, A.V. Moholkar, J.H. Moon, J.Y. Lee, and J.H. Kim, Sol. Energy Mater. Sol. Cells 95, 856 (2011).

    Article  Google Scholar 

  30. W.S. Ni, Y.J. Lin, C.J. Liu, Y.W. Yang, and L. Horng, J. Alloy. Compd. 556, 178 (2013).

    Article  Google Scholar 

  31. B.J. Tan, K.J. Klabunde, and P.M.A. Sherwood, J. Am. Chem. Soc. 113, 855 (1991).

    Article  Google Scholar 

  32. Y. Okamoto, T. Imanaka, and S. Teranishi, J. Catal. 65, 448 (1980).

    Article  Google Scholar 

  33. M. El-Hagary, M. Emam-Ismail, E.R. Shaaban, A. Al-Rashidi, and S. Althoyaib, Mater. Chem. Phys. 132, 581 (2012).

    Article  Google Scholar 

  34. A. Goktas, I.H. Mutlu, and J. Sol-Gel, Sci. Technol. 69, 120 (2014).

    Google Scholar 

  35. A. Goktas, Appl. Surf. Sci. 340, 151 (2015).

    Article  Google Scholar 

  36. M.S. Akhtar, Y.G. Alghamdi, M.A. Malik, R.M.A. Khalil, S. Riazb, and S. Naseemb, J. Mater. Chem. C 3, 6755 (2015).

    Article  Google Scholar 

  37. L.-J. Tang, G.-F. Huang, Y. Tian, W.-Q. Huang, M.-G. Xia, C. Jiao, J.-P. Long, and S.-Q. Zhan, Mater. Lett. 100, 237 (2013).

    Article  Google Scholar 

  38. X. Ma and Z. Wang, Microelectron. Eng. 88, 3168 (2011).

    Article  Google Scholar 

  39. J. Dreyhsig, K. Klein, H.-E. Gumlich, and J.W. Allen, Solid State Commun. 85, 19 (1994).

    Article  Google Scholar 

  40. P. Koidl, Phys. Rev. B 15, 2492 (1977).

    Article  Google Scholar 

  41. T. Badapanda, S.K. Rout, L.S. Cavalcante, J.C. Sczancoski, S. Panigrahi, E. Longo, and M. Siu Li, J. Phys. D Appl. Phys. 42, 175414 (2009).

    Article  Google Scholar 

  42. S. Singh and P. Chakrabarti, Adv. Sci. Eng. Med. 5, 677 (2013).

    Article  Google Scholar 

  43. S. Vyas, P. Giri, S. Singh, and P. Chakrabarti, J. Electron. Mater. 44, 3401 (2015).

    Article  Google Scholar 

  44. F.L. Xian, L.H. Xu, X.X. Wang, and X.Y. Li, Cryst. Res. Technol. 47, 423 (2012).

    Article  Google Scholar 

  45. J. Bian, X. Li, L. Chen, and Q. Yao, Chem. Phys. Lett. 393, 256 (2004).

    Article  Google Scholar 

  46. C. Vatankhah, S. Jafargholinejad, S. Karami, and R. Vatankhah, Aust. J. Basic Appl. Sci. 4, 4423 (2010).

    Google Scholar 

  47. M.T. Le and J. Lee, Geosyst. Eng. 16, 231 (2013).

    Article  Google Scholar 

  48. P.H. Borse, N. Deshmukh, R.F. Shinde, S.K. Date, and S.K. Kulakarni, J. Mater. Sci. 34, 6087 (1999).

    Article  Google Scholar 

  49. C.J. Chen, W. Gao, Z.F. Qin, W. Hu, and M. Qu, J. Appl. Phys. 70, 6277 (1991).

    Article  Google Scholar 

  50. A. Lewicki, A.I. Schindler, J.K. Furdyna, and W. Giriat, Phys. Rev. B 40, 2379 (1989).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Goktas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goktas, A., Mutlu, İ. Structural, Optical, and Magnetic Properties of Solution-Processed Co-Doped ZnS Thin Films. J. Electron. Mater. 45, 5709–5720 (2016). https://doi.org/10.1007/s11664-016-4771-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4771-3

Keywords

Navigation