Journal of Electronic Materials

, Volume 45, Issue 11, pp 5709–5720 | Cite as

Structural, Optical, and Magnetic Properties of Solution-Processed Co-Doped ZnS Thin Films

  • A. GoktasEmail author
  • İ.H. Mutlu


Co-doped ZnS thin films have been grown on glass substrates using solution-processing and dip-coating techniques, and the impact of the Co doping level (0% to 5%) and film thickness on certain characteristics examined. X-ray diffraction study revealed that all the films possessed hexagonal crystal structure. Energy-dispersive x-ray analysis confirmed presence of Zn, Co, and S in the samples. Scanning electron microscopy showed that the film surface was homogeneous and dense with some cracks and spots. X-ray photoelectron spectroscopy confirmed introduction and integration of Co2+ ions into the ZnS thin films. Compared with undoped ZnS, optical studies indicated a reduction in optical bandgap energy (E g) while the refractive index (n), extinction coefficient (k), and dielectric constants (ε 1, ε 2) increased with film thickness (t) and Co doping level (except for 5%). Photoluminescence spectra showed enhanced luminescence intensity as the Co concentration was increased, while the dependence on t showed an initial increase followed by a decrease. The origin of the observed low-temperature (5 K and 100 K) ferromagnetic order may be related to point defects such as zinc vacancies, zinc interstitials, and sulfide vacancies or to the grain-boundary effect.


Co-doped ZnS solution processing photoluminescence refractive index dielectric constant paramagnetic/ferromagnetic behavior 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Poornaprakash, D. Amaranatha Reddy, G. Murali, N. Madhusudhana Rao, R.P. Vijayalakshmi, and B.K. Reddy, J. Alloy. Compd. 577, 79 (2013).CrossRefGoogle Scholar
  2. 2.
    A. Goktas, F. Aslan, E. Yasar, and I.H. Mutlu, J. Mater. Sci.: Mater. Electron. 23, 1361 (2012).Google Scholar
  3. 3.
    S.P. Patel, J.C. Pivin, A.K. Chawla, R. Chandra, D. Kanjilal, and L. Kumar, J. Magn. Magn. Mater. 323, 2734 (2011).CrossRefGoogle Scholar
  4. 4.
    A. Goktas, I.H. Mutlu, Y. Yamada, and E. Celik, J. Alloy. Compd. 553, 259 (2013).CrossRefGoogle Scholar
  5. 5.
    N. Kumbhojkar, V.V. Nikesh, A. Kshirsagar, and S. Mahamuni, J. Appl. Phys. 88, 6260 (2000).CrossRefGoogle Scholar
  6. 6.
    N. Goswami and P. Sen, J. Nanopart. Res. 9, 513 (2007).CrossRefGoogle Scholar
  7. 7.
    A. Goktas, I.H. Mutlu, and Y. Yamada, Superlatt. Microstruct. 57, 139 (2013).CrossRefGoogle Scholar
  8. 8.
    T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000).CrossRefGoogle Scholar
  9. 9.
    J. Xie, J. Magn. Magn. Mater. 322, L37 (2010).CrossRefGoogle Scholar
  10. 10.
    Y. Li, Z. Zhou, P. Jin, Y. Chen, S.B. Zhang, and Z. Chen, J. Phys. Chem. C 114, 12099 (2010).CrossRefGoogle Scholar
  11. 11.
    S. Sambasivam, D.P. Joseph, J.G. Lin, and C. Venkateswaran, J. Solid State Chem. 182, 2598 (2009).CrossRefGoogle Scholar
  12. 12.
    G. Ren, Z. Lin, C. Wang, W. Liu, J. Zhang, F. Huang, and J. Liang, Nanotechnology 18, 035705 (2007).CrossRefGoogle Scholar
  13. 13.
    K. Sato and H. Katayama-Yoshida, Phys. Status Solidi B 229, 673 (2002).CrossRefGoogle Scholar
  14. 14.
    H.C. Ong and R.P.H. Chang, Appl. Phys. Lett. 79, 3612 (2001).CrossRefGoogle Scholar
  15. 15.
    R. Sarkar, C.S. Tiwary, P. Kumbhakar, and A.K. Mitra, Physica B 404, 3855 (2009).CrossRefGoogle Scholar
  16. 16.
    S.D. Sartale, B.R. Sankapal, M. Lux-Steiner, and A. Ennaoui, Thin Solid Films 480, 168 (2005).CrossRefGoogle Scholar
  17. 17.
    A. Ennaoui, W. Eisele, M. Lux-Steiner, T.P. Niesen, and F. Karg, Thin Solid Films 431, 335 (2003).CrossRefGoogle Scholar
  18. 18.
    R.N. Bhattacharya and K. Rammanathan, Sol. Energy 77, 679 (2004).CrossRefGoogle Scholar
  19. 19.
    I. Polat, S. Aksu, M. Altunbaş, and E. Bacaksız, Mater. Chem. Phys. 130, 800 (2011).CrossRefGoogle Scholar
  20. 20.
    A.I. Inamdar, S. Lee, D. Kim, K.V. Gurav, J.H. Kim, H. Im, W. Jung, and H. Kim, Thin Solid Films 537, 36 (2013).CrossRefGoogle Scholar
  21. 21.
    C.S. Pathak, M.K. Mandal, and V. Agarwala, Mater. Sci. Semicond. Process. 16, 467 (2013).CrossRefGoogle Scholar
  22. 22.
    N. Karar and H. Chander, J. Nanosci. Nanotechnol. 5, 1498 (2005).CrossRefGoogle Scholar
  23. 23.
    R.N. Bhargava, D. Gallager, X. Hong, and A. Nurmikko, Phys. Rev. Lett. 72, 416 (1994).CrossRefGoogle Scholar
  24. 24.
    Nie Eryong, Liu Donglai, Zhang Yunsen, Bai Xue, Yi Liang, Jin Yong, Jiao Zhifeng, and Sun Xiaosong, Appl. Surf. Sci. 257, 8762 (2011).CrossRefGoogle Scholar
  25. 25.
    P. Yang, M. LuE, D. XuE, D. Yuana, C. Songa, and G. Zhoub, J. Phys. Chem. Solids 62, 1181 (2001).CrossRefGoogle Scholar
  26. 26.
    R.D. Shannon, Acta Crystallogr. A 32, 751 (1976).CrossRefGoogle Scholar
  27. 27.
    A. Goktas, F. Aslan, and I.H. Mutlu, J. Alloy. Compd. 615, 765 (2014).CrossRefGoogle Scholar
  28. 28.
    L. Wei, Z. Li, and W.F. Zhang, Appl. Surf. Sci. 255, 4992 (2009).CrossRefGoogle Scholar
  29. 29.
    S.W. Shin, S.R. Kang, J.H. Yun, A.V. Moholkar, J.H. Moon, J.Y. Lee, and J.H. Kim, Sol. Energy Mater. Sol. Cells 95, 856 (2011).CrossRefGoogle Scholar
  30. 30.
    W.S. Ni, Y.J. Lin, C.J. Liu, Y.W. Yang, and L. Horng, J. Alloy. Compd. 556, 178 (2013).CrossRefGoogle Scholar
  31. 31.
    B.J. Tan, K.J. Klabunde, and P.M.A. Sherwood, J. Am. Chem. Soc. 113, 855 (1991).CrossRefGoogle Scholar
  32. 32.
    Y. Okamoto, T. Imanaka, and S. Teranishi, J. Catal. 65, 448 (1980).CrossRefGoogle Scholar
  33. 33.
    M. El-Hagary, M. Emam-Ismail, E.R. Shaaban, A. Al-Rashidi, and S. Althoyaib, Mater. Chem. Phys. 132, 581 (2012).CrossRefGoogle Scholar
  34. 34.
    A. Goktas, I.H. Mutlu, and J. Sol-Gel, Sci. Technol. 69, 120 (2014).Google Scholar
  35. 35.
    A. Goktas, Appl. Surf. Sci. 340, 151 (2015).CrossRefGoogle Scholar
  36. 36.
    M.S. Akhtar, Y.G. Alghamdi, M.A. Malik, R.M.A. Khalil, S. Riazb, and S. Naseemb, J. Mater. Chem. C 3, 6755 (2015).CrossRefGoogle Scholar
  37. 37.
    L.-J. Tang, G.-F. Huang, Y. Tian, W.-Q. Huang, M.-G. Xia, C. Jiao, J.-P. Long, and S.-Q. Zhan, Mater. Lett. 100, 237 (2013).CrossRefGoogle Scholar
  38. 38.
    X. Ma and Z. Wang, Microelectron. Eng. 88, 3168 (2011).CrossRefGoogle Scholar
  39. 39.
    J. Dreyhsig, K. Klein, H.-E. Gumlich, and J.W. Allen, Solid State Commun. 85, 19 (1994).CrossRefGoogle Scholar
  40. 40.
    P. Koidl, Phys. Rev. B 15, 2492 (1977).CrossRefGoogle Scholar
  41. 41.
    T. Badapanda, S.K. Rout, L.S. Cavalcante, J.C. Sczancoski, S. Panigrahi, E. Longo, and M. Siu Li, J. Phys. D Appl. Phys. 42, 175414 (2009).CrossRefGoogle Scholar
  42. 42.
    S. Singh and P. Chakrabarti, Adv. Sci. Eng. Med. 5, 677 (2013).CrossRefGoogle Scholar
  43. 43.
    S. Vyas, P. Giri, S. Singh, and P. Chakrabarti, J. Electron. Mater. 44, 3401 (2015).CrossRefGoogle Scholar
  44. 44.
    F.L. Xian, L.H. Xu, X.X. Wang, and X.Y. Li, Cryst. Res. Technol. 47, 423 (2012).CrossRefGoogle Scholar
  45. 45.
    J. Bian, X. Li, L. Chen, and Q. Yao, Chem. Phys. Lett. 393, 256 (2004).CrossRefGoogle Scholar
  46. 46.
    C. Vatankhah, S. Jafargholinejad, S. Karami, and R. Vatankhah, Aust. J. Basic Appl. Sci. 4, 4423 (2010).Google Scholar
  47. 47.
    M.T. Le and J. Lee, Geosyst. Eng. 16, 231 (2013).CrossRefGoogle Scholar
  48. 48.
    P.H. Borse, N. Deshmukh, R.F. Shinde, S.K. Date, and S.K. Kulakarni, J. Mater. Sci. 34, 6087 (1999).CrossRefGoogle Scholar
  49. 49.
    C.J. Chen, W. Gao, Z.F. Qin, W. Hu, and M. Qu, J. Appl. Phys. 70, 6277 (1991).CrossRefGoogle Scholar
  50. 50.
    A. Lewicki, A.I. Schindler, J.K. Furdyna, and W. Giriat, Phys. Rev. B 40, 2379 (1989).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  1. 1.Department of Physics, Faculty of Arts and SciencesHarran UniversitySanliurfaTurkey
  2. 2.Department of Physics and Materials, Interdisciplinary Faculty of Science and EngineeringShimane UniversityMatsueJapan
  3. 3.Department of Materials Science and EngineeringAkdeniz UniversityAntalyaTurkey

Personalised recommendations