Journal of Electronic Materials

, Volume 45, Issue 11, pp 5867–5876 | Cite as

Optical Distinctions Between Weyl Semimetal TaAs and Dirac Semimetal Na3Bi: An Ab Initio Investigation

  • Mehrdad Dadsetani
  • Ali Ebrahimian


We present ab initio a study on linear and nonlinear optical properties of topological semimetal Tantalum arsenide and Sodium bismuthate. The real and imaginary part of the dielectric function in addition to the energy loss spectra of TaAs and Na3Bi have been calculated within random phase approximation (RPA); then, the electron–hole interaction is included by solving the Bethe–Salpeter equation for the electron–hole Green’s function. In spite of being in the single category of topological materials, we have found obvious distinction between linear optical responses of TaAs and Na3Bi at a high energy region where, in contrast to Na3Bi, Tantalum arsenide has excitonic peaks at 9 eV and 9.5 eV. It is remarkable that the excitonic effects in the high energy range of the spectrum are stronger than in the lower one. The dielectric function is overall red shifted compared with that of RPA approximation. The resulting static dielectric constants for Na3Bi are smaller than corresponding ones in TaAs. At a low energy region, the absorption intensity of TaAs is more than Na3Bi. The calculated second-order nonlinear optical susceptibilities χ ijk (2) (ω) show that Tantalum arsenide acts as a Weyl semimetal, and has high values of nonlinear responses in the low energy region which makes it promising candidate for the second harmonic generation in the terahertz frequency region. In the low energy regime, optical spectra are dominated by the 2ω intra-band contributions.


Weyl semimetal Dirac semimetal Na3Bi excitonic effects TaAs optical properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Ciudad, Nat. Mater. 14, 863 (2015).CrossRefGoogle Scholar
  2. 2.
    Z.K. Liu, J. Jiang, B. Zhou, Z.J. Wang, Y. Zhang, H.M. Weng, D. Prabhakaran, S.-K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z.X. Shen, D.L. Feng, Z. Hussain, and Y.L. Chen, Nat. Mater. 13, 677 (2014).CrossRefGoogle Scholar
  3. 3.
    M. Neupane, S.Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T.R. Chang, H.T. Jeng, H. Lin, A. Bansil, F. Chou, and M.Z. Hasan, Nat. Commun. 5, 3786 (2014).Google Scholar
  4. 4.
    S. Jeon, B.B. Zhou, A. Gyenis, B.E. Feldman, I. Kimchi, A.C. Potter, Q.D. Gibson, R.J. Cava, A. Vishwanath, and A. Yazdani, Nat. Mater. 13, 851 (2014).CrossRefGoogle Scholar
  5. 5.
    L.X. Yang, Z.K. Liu, Y. Sun, H. Peng, H.F. Yang, T. Zhang, B. Zhou, Y. Zhang, Y.F. Guo, M. Rahn, D. Prabhakaran, Z. Hussain, S.-K. Mo, C. Felser, B. Yanand, and Y.L. Chen, Nat. Phys. 11, 728 (2015).CrossRefGoogle Scholar
  6. 6.
    L. Balents, Physics 4, 36 (2011).CrossRefGoogle Scholar
  7. 7.
    G. Xu, H. Weng, Z. Wang, X. Dai, and Z. Fang, Phys. Rev. Lett. 107, 186806 (2011).CrossRefGoogle Scholar
  8. 8.
    A.M. Turner and A. Vishwanath, Contemp. Concept Condens. Matter Sci. 6, 293 (2013).Google Scholar
  9. 9.
    O. Vafek and A. Vishwanath, Annu. Rev. Condens. Matter Phys. 5, 83 (2014).CrossRefGoogle Scholar
  10. 10.
    H. Weyl, Z. Phys. 56, 330 (1929).CrossRefGoogle Scholar
  11. 11.
    G.T. Volovik, JETP Lett. 75, 55 (2002).CrossRefGoogle Scholar
  12. 12.
    S.M. Young, S. Zaheer, J.C.Y. Teo, C.L. Kane, E.J. Mele, and A.M. Rappe, Phys. Rev. Lett. 108, 140405 (2012).CrossRefGoogle Scholar
  13. 13.
    Z.J. Wang, Y. Sun, X.Q. Chen, C. Franchini, G. Xu, H.M. Weng, X. Dai, and Z. Fang, Phys. Rev. B 85, 195320 (2012).CrossRefGoogle Scholar
  14. 14.
    Z. Wang, H. Weng, Q. Wu, X. Dai, and Z. Fang, Phys. Rev. B 88, 125427 (2013).CrossRefGoogle Scholar
  15. 15.
    X.G. Wan, A.M. Turner, A. Vishwanath, and S.Y. Savrasov, Phys. Rev. B 83, 205101 (2011).CrossRefGoogle Scholar
  16. 16.
    M.Z. Hasan and C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010).CrossRefGoogle Scholar
  17. 17.
    P. Hosur, Phys. Rev. B 86, 195102 (2012).CrossRefGoogle Scholar
  18. 18.
    A.C. Potter, I. Kimchi, and A. Vishwanath, Nat. Commun. 5, 5161 (2014).CrossRefGoogle Scholar
  19. 19.
    T. Morimoto and N. Nagaosa, Phys. Rev. B 93, 125125 (2016). doi: 10.1103/PhysRevB.93.125125.
  20. 20.
    S.D. Ganichev and W. Prettl, Intense Terahertz Excitation of Semiconductors (Oxford: Oxford Univ. Press, 2006).Google Scholar
  21. 21.
    M.C. Hoffmann, N.C. Brandt, H.Y. Hwang, K.-L. Yeh, and K.A. Nelson, Appl. Phys. Lett. 95, 231105 (2009).CrossRefGoogle Scholar
  22. 22.
    D. Turchinovich, J.M. Hvam, and M.C. Hoffmann, Phys. Rev. B 85, 201304 (2012).CrossRefGoogle Scholar
  23. 23.
    M. Cornet, J. Degert, E. Abraham, and E. Freysz, J. Opt. Soc. Am. B 31, 1648 (2014).CrossRefGoogle Scholar
  24. 24.
    C.D. Spataru, S. Ismail-Beigi, L.X. Benedict, and G. Steven, Louie. Phys. Rev. Lett. 92, 077402 (2004).CrossRefGoogle Scholar
  25. 25.
    J. Deslippe, C.D. Spataru, D. Prendergast, and S.G. Louie, Nano Lett. 7, 1626 (2007).CrossRefGoogle Scholar
  26. 26.
    L. Yang, J. Deslippe, C.H. Park, M.L. Cohen, and S.G. Louie, Phys. Rev. Lett. 103, 186802 (2009).CrossRefGoogle Scholar
  27. 27.
    M. Dvorak and Z. Wu, Phys. Rev. B 92, 035422 (2015).CrossRefGoogle Scholar
  28. 28.
    F. Wang, D.J. Cho, B. Kessler, J. Deslippe, P.J. Schuck, S.G. Louie, A. Zettl, T.F. Heinz, and Y.R. Shen, Phys. Rev. Lett. 99, 227401 (2007).CrossRefGoogle Scholar
  29. 29.
    A.K. Geim and K.S. Novoselov, Nat. Mat. 6, 183 (2007).CrossRefGoogle Scholar
  30. 30.
    A.H.C. Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, and A.K. Geim, Rev. Mod. Phys. 81, 109 (2009).CrossRefGoogle Scholar
  31. 31.
    S.-Y. Xu, C. Liu, S.K. Kushwaha, R. Sankar, J.W. Krizan, I. Belopolski, M. Neupane, G. Bian, N. Alidoust, T.-R. Chang, H.-T. Jeng, C.-Y. Huang, W.-F. Tsai, H. Lin, F. Chou, P.P. Shibayev, R.J. Cava, and M.Z. Hasan, Science 347, 294 (2015).CrossRefGoogle Scholar
  32. 32.
    Z.K. Liu, B. Zhou, Y. Zhang, Z.J. Wang, H.M. Weng, D. Prabhakaran, S.K. Mo, Z.X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y.L. Chen, Science 343, 864 (2014).CrossRefGoogle Scholar
  33. 33.
    S.-M. Huang, S.-Y. Xu, I. Belopolski, C.-C. Lee, G. Chang, B.K. Wang, N. Alidoust, G. Bian, M. Neupane, C. Zhang, S. Jia, A. Bansil, H. Lin, and M.Z. Hasan, Nat. Commun. 6, 7373 (2015).CrossRefGoogle Scholar
  34. 34.
    H. Weng, C. Fang, Z. Fang, B.A. Bernevig, and X. Dai, Phys. Rev. X 5, 011029 (2015).Google Scholar
  35. 35.
    B.Q. Lv, H.M. Weng, B.B. Fu, X.P. Wang, H. Miao, J. Ma, P. Richard, X.C. Huang, L.X. Zhao, G.F. Chen, Z. Fang, X. Dai, and T. Qian, and H. Ding Phys. Rev. X 5, 031013 (2015).Google Scholar
  36. 36.
    P.E.C. Ashby and J.P. Carbotte, Phys. Rev. B 89, 245121 (2014).CrossRefGoogle Scholar
  37. 37.
    R.Y. Chen, S.J. Zhang, J.A. Schneeloch, C. Zhang, Q. Li, G.D. Gu, and N.L. Wang, Phys. Rev. B 92, 075107 (2015).CrossRefGoogle Scholar
  38. 38.
    T. Timusk, J.P. Carbotte, C.C. Homes, D.N. Basov, and S.G. Sharapov, Phys. Rev. B 87, 235121 (2013).CrossRefGoogle Scholar
  39. 39.
    P. Hosur, S.A. Parameswaran, and A. Vishwanath, Phys. Rev. Lett. 108, 046602 (2012).CrossRefGoogle Scholar
  40. 40.
    B. Xu, Y.M. Dai, L.X. Zhao, K. Wang, R. Yang, W. Zhang, J.Y. Liu, H. Xiao, G.F. Chen, A.J. Taylor, D.A. Yarotski, R.P. Prasankumar, and X.G. Qiu, Phys. Rev. B 93, 121110 (2016). doi: 10.1103/PhysRevB.93.121110.
  41. 41.
    G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys. 74, 601 (2002).CrossRefGoogle Scholar
  42. 42.
    M. Rohlfing and S.G. Louie, Phys. Rev. Lett. 81, 2312 (1998).CrossRefGoogle Scholar
  43. 43.
    A. Gulans, S. Kontur, C. Meisenbichler, D. Nabok, P. Pavone, S. Rigamonti, S. Sagmeister, U. Werner, and C. Draxl, J. Phys.: Condens. Matter 26, 363202 (2014).Google Scholar
  44. 44.
    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
  45. 45.
    P. Puschnig and C. Ambrosch-Draxl, Phys. Rev. B 66, 165105 (2002).CrossRefGoogle Scholar
  46. 46.
    M. Rohlfing and S.G. Louie, Phys. Rev. B 62, 4927 (2000).CrossRefGoogle Scholar
  47. 47.
    J.E. Sipe and E. Ghahramani, Phys. Rev. B. 48, 11705 (1993).CrossRefGoogle Scholar
  48. 48.
    C. Aversa and J.E. Sipe, Phys. Rev. B. 52, 14636 (1995).CrossRefGoogle Scholar
  49. 49.
    S. Sharma, J.K. Dewhurst, and C. Ambrosch-Draxl, Phys. Rev. B. 67, 165332 (2003).CrossRefGoogle Scholar
  50. 50.
    S. Sharma and C. Ambrosch-Draxl, Phys. Scr. T. 109, 128 (2004).CrossRefGoogle Scholar
  51. 51.
    A.H. Reshak (Ph.D. thesis, Indian Institute of Technology-Rookee, India, 2005).Google Scholar
  52. 52.
    A.H. Reshak, J. Chem. Phys. 125, 014708 (2006).CrossRefGoogle Scholar
  53. 53.
    A.H. Reshak, J. Chem. Phys. 124, 014707 (2006).CrossRefGoogle Scholar
  54. 54.
    S.N. Rashkeev and W.R.L. Lambrecht, Phys. Rev. B. 63, 165212 (2001).CrossRefGoogle Scholar
  55. 55.
    S.N. Rashkeev, W.R.L. Lambrecht, and B. Segall, Phys. Rev. B 57, 3905 (1998).Google Scholar
  56. 56.
    C. Ambrosch-Draxl and J. Sofo, Comput. Phys. Commun. 175, 1 (2006).CrossRefGoogle Scholar
  57. 57.
    K. Dewhurst, S. Sharma, L. Nordstrom, F. Cricchio, F. Bultmark, H. Gross, C. Ambrosch Draxl, C. Persson, C. Brouder, R. Armiento, A. Chizmeshya, P. Anderson, I. Nekrasov, F. Wagner, F. Kalarasse, J. Spitaler, S. Pittalis, N. Lathiotakis, T. Burnus, S. Sagmeister, C. Meisenbichler, S. Lebegue, Y. Zhang, F. Kormann, A. Baranov, A. Kozhevnikov, S. Suehara, F. Essenberger, A. Sanna, T. McQueen, T. Baldsiefen, M. Blaber, A. Filanovich, and T. Bjorkman, Elk FP-LAPW code Accessed 22 Jan 2016.
  58. 58.
    S. Furuseth, K. Selte, and A. Kjekshus, Acta Chem. Scand. 19, 95 (1965).CrossRefGoogle Scholar
  59. 59.
    T.B. Massalski, Binary Alloy Phase Diagrams (Materials Park: ASM, 1990).Google Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  1. 1.Department of PhysicsLorestan UniversityKhorramabadIran

Personalised recommendations