Journal of Electronic Materials

, Volume 45, Issue 10, pp 5367–5374 | Cite as

An Analytical Threshold Voltage Model of Fully Depleted (FD) Recessed-Source/Drain (Re-S/D) SOI MOSFETs with Back-Gate Control



This paper presents an analytical threshold voltage model for back-gated fully depleted (FD), recessed-source drain silicon-on-insulator metal-oxide-semiconductor field-effect transistors (MOSFETs). Analytical surface potential models have been developed at front and back surfaces of the channel by solving the two-dimensional (2-D) Poisson’s equation in the channel region with appropriate boundary conditions assuming a parabolic potential profile in the transverse direction of the channel. The strong inversion criterion is applied to the front surface potential as well as on the back one in order to find two separate threshold voltages for front and back channels of the device, respectively. The device threshold voltage has been assumed to be associated with the surface that offers a lower threshold voltage. The developed model was analyzed extensively for a variety of device geometry parameters like the oxide and silicon channel thicknesses, the thickness of the source/drain extension in the buried oxide, and the applied bias voltages with back-gate control. The proposed model has been validated by comparing the analytical results with numerical simulation data obtained from ATLAS™, a 2-D device simulator from SILVACO.


Fully depleted (FD) recessed-source/drain (Re-S/D) SOI MOSFET back-gate control buried oxide (BOX) threshold voltage controllability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.P. Colinge, Rom. J. Inf. Sci. Technol. 11, 3 (2008).Google Scholar
  2. 2.
    K.K. Young, IEEE Trans. Electron Devices 36, 399 (1989).CrossRefGoogle Scholar
  3. 3.
    V.P. Trivedi and J.G. Fossum, IEEE Trans. Electron Devices 50, 2095 (2003).CrossRefGoogle Scholar
  4. 4.
    A. Chaudhry and M.J. Kumar, IEEE Trans. Device Mater. Reliab. 4, 99 (2004).CrossRefGoogle Scholar
  5. 5.
    C.F. Beranger, S. Denorme, P. Perreau, C. Buj, O. Faynot, F. Andrieu, L. Tosti, S. Barnola, T. Salvetat, X. Garros, M. Cassé, F. Allain, N. Loubet, L. Pham-Nguyen, E. Deloffre, M. Gros-Jean, R. Beneyton, C. Laviron, M. Marin, C. Leyris, S. Haendler, F. Leverd, P. Gouraud, P. Scheiblin, L. Clement, R. Pantel, S. Deleonibus, and T. Skotnicki, Solid State Electron 53, 730 (2009).CrossRefGoogle Scholar
  6. 6.
    M. Noguchi, T. Numata, Y. Mitani, T. Shino, S. Kawanaka, Y. Oowaki, and A. Toriumi, IEEE Electron Device Lett 22, 32 (2001).CrossRefGoogle Scholar
  7. 7.
    M. Chan, F. Assaderaghi, S.A. Parke, and C. Hu, IEEE Electron Device Lett 15, 22 (1994).CrossRefGoogle Scholar
  8. 8.
    C. Ahn, W. Cho, K. Im, J. Yang, I. BaekI, S. Lee, and S. Baek, (U.S. Patent) US20060131648 A1 [2006-06-22].Google Scholar
  9. 9.
    H. I. Hanafi, D. C. Boyd, K. K. Chan, W. Natzle, and L. Shi, (U.S. Patent) 6841831 B2 [2005-01-11].Google Scholar
  10. 10.
    B. Svilicic, V. Jovanovic’, and T. Suligoj, Solid State Electron 53, 540 (2009).CrossRefGoogle Scholar
  11. 11.
    G.K. Saramekala, A. Santra, S. Dubey, S. Jit, and P.K. Tiwari, Superlattices Microstruct. 60, 580 (2013).CrossRefGoogle Scholar
  12. 12.
    A. Kumar and P.K. Tiwari, Solid State Electron 95, 52 (2014).CrossRefGoogle Scholar
  13. 13.
    G.K. Saramekala, S. Dubey, and P.K. Tiwari, Chin. Phys. B 24, 108505-1 (2015).Google Scholar
  14. 14.
    K.R. Han, B.K. Choi, H.I. Kwoni, and J.H. Lee, Jpn. J. Appl. Phys. 47, 4385 (2008).CrossRefGoogle Scholar
  15. 15.
    Y. Yang, S. Markov, and B. Cheng, IEEE Trans. Electron Devices 60, 739 (2013).CrossRefGoogle Scholar
  16. 16.
    I. Yang, C. Vieri, A. Chandraksan, and D. Antoniadis, Proceedings of IEDM (1995), p. 877. doi:10.1109/IEDM.1995. 499356.
  17. 17.
    T. Numata, M. Noguchi, and S. Takagia, Solid State Electron 48, 979 (2004).CrossRefGoogle Scholar
  18. 18.
    A. Majumdar, Z. Ren, S.J. Koester, and W. Haensch, IEEE Trans. Electron Devices 56, 2270 (2009).CrossRefGoogle Scholar
  19. 19.
    A. Biswas and S. Bhattacherjee, Microelectron. Reliab. 53, 363 (2013).CrossRefGoogle Scholar
  20. 20.
    N. Fasarakis, T. Karatsori, D.H. Tassis, C.G. Theodorou, F. Andrieu, O. Faynot, G. Ghibaudo, and C.A. Dimitriadis, IEEE Trans. Electron Devices 61, 969 (2014).CrossRefGoogle Scholar
  21. 21.
    S. Khandelwal, Y.S. Chauhan, D.D. Lu, S. Venugopalan, M.A.U. Karim, A.B. Sachid, B.-Y. Nguyen, O. Rozeau, O. Faynot, A.M. Niknejad, and C.C. Hu, IEEE Trans. Electron Devices 59, 2026 (2012).Google Scholar
  22. 22.
    Silvaco International, ATLAS User’s Manual (Santa Clara: Silvaco International, 2012).Google Scholar
  23. 23.
    A. Ortiz-Conde, F.J. Garcia Sanchez, J.J. Liou, A. Cerdeira, M. Estrada, and Y. Yue, Microelectron. Reliab. 42, 583 (2002).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2016

Authors and Affiliations

  • Gopi Krishna Saramekala
    • 1
  • Pramod Kumar Tiwari
    • 2
  1. 1.Department of Electronics and Communication EngineeringNational Institute of TechnologyRourkelaIndia
  2. 2.Department of Electrical EngineeringIndian Institute of Technology, PatnaPatnaIndia

Personalised recommendations