Skip to main content
Log in

Effects of Ethyl Cellulose on Performance of Titania Photoanode for Dye-sensitized Solar Cells

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Ethyl cellulose (EC) was added to a titania (TiO2) paste from 2 wt.% to 18 wt.% as a binder/dispersant, and its effects on the photovoltaic performance of dye-sensitized solar cells (DSSCs) were investigated. The TiO2 mesoporous film constructed on the photoanode exhibited a dense and network structure composed of well-interconnected TiO2 nanoparticles when using a proper amount of EC (10 wt.%). Excessive and deficient addition of EC resulted in aggregation of TiO2 nanoparticles and formation of pores, respectively, in the TiO2 film. The power conversion efficiency (PCE) of DSSC showed a strong dependence on the EC content and the highest PCE of 7.53% with the highest short-circuit current density (J SC) of 12.7 mA/cm2 was achieved when the content of EC was 10 wt.%. The incident photon-to-current conversion efficiency (IPCE) results indicated that the TiO2 mesoporous film fabricated using a proper EC addition was beneficial for electron generation (also confirmed by dye desorption experiments) and electron transport, and, therefore, improved the photovoltaic performance of DSSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Oregan and M. Grätzel, Nature 353, 737 (1995).

    Article  Google Scholar 

  2. A. Burke, L. Schmidt-Mende, S. Ito, and M. Grätzel, Chem. Commun. 3, 234 (2007).

    Article  Google Scholar 

  3. A. Yella, H.W. Lee, H.N. Tsao, A.K. Chandiran, M.K. Nazeeruddin, E.W.G. Diau, C.Y. Yeh, S.M. Zakeeruddin, and M. Grätzel, Science 334, 629 (2011).

    Article  Google Scholar 

  4. K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J. Fujisawa, and M. Hanaya, Chem. Commun. 51, 15894 (2015).

    Article  Google Scholar 

  5. Z.S. Wang, H. Kawauchi, T. Kashima, and H. Arakawa, Coord. Chem. Rev. 248, 1381 (2004).

    Article  Google Scholar 

  6. D. Chen, F. Huang, Y.B. Cheng, and R.A. Caruso, Adv. Mater. 21, 2206 (2009).

    Article  Google Scholar 

  7. H. Yu, S. Zhang, H. Zhao, B. Xue, P. Liu, and G. Will, J. Phys. Chem. C 113, 16277 (2009).

    Article  Google Scholar 

  8. J.J. Wu, G.R. Chen, C.C. Lu, W.T. Wu, and J.S. Chen, Nanotechnology 19, 105702 (2009).

    Article  Google Scholar 

  9. E.C. Muniz, M.S. Góes, J.J. Silva, J.A. Varela, E. Joanni, R. Parra, and P.R. Bueno, Ceram. Int. 37, 1017 (2011).

    Article  Google Scholar 

  10. H.G. Bang, J.K. Chung, R.Y. Jung, and S.Y. Park, Ceram. Int. 38, S511 (2012).

    Article  Google Scholar 

  11. M. Mojaddami, Z.A. Garmaroudi, M.R. Mohammadi, and H.R.M. Hosseini, J. Taiwan Inst. Chem. Eng. 61, 138 (2016).

    Article  Google Scholar 

  12. H.-P. Kuo, C.-F. Yang, A.-N. Huang, C.-T. Wu, and W.-C. Pan, J. Taiwan Inst. Chem. Eng. 45, 2340 (2014).

    Article  Google Scholar 

  13. J.J. Wu, G.R. Chen, H.H. Yang, C.H. Ku, and J.Y. Lai, Appl. Phys. Lett. 90, 213109 (2007).

    Article  Google Scholar 

  14. B. O’Regan, L. Xiaoe, and T. Ghaddar, Energy Environ. Sci. 5, 7203 (2012).

    Article  Google Scholar 

  15. A. Kumar, A.R. Madaria, and C. Zhou, J. Phys. Chem. C 114, 7787 (2010).

    Article  Google Scholar 

  16. I. Paramasivam, H. Jha, N. Liu, and P. Schmuki, Small 8, 3073 (1012).

    Article  Google Scholar 

  17. A.I. Knotos, A.G. Kontos, D.S. Tsoukleris, M.C. Bernard, N. Spyrellis, and P. Falaras, J. Mater. Process. Tech. 196, 243 (2008).

    Article  Google Scholar 

  18. G. Ruani, C. Ancora, F. Corticelli, C. Dionigi, and C. Rossi, Sol. Energy Mater. Sol. Cells 92, 537 (2008).

    Article  Google Scholar 

  19. G.S. Kim, H.K. Seo, V.P. Godble, Y.S. Kim, O.B. Yang, and H.S. Shin, Electrochem. Commun. 8, 961 (2006).

    Article  Google Scholar 

  20. M. Hamadanian, A. Gravand, and V. Jabbari, Mater. Sci. Semicond. Process. 16, 1352 (2013).

    Article  Google Scholar 

  21. L. Ma, M. Liu, T. Peng, K. Fan, L. Lu, and K. Dai, Mater. Chem. Phys. 118, 477 (2009).

    Article  Google Scholar 

  22. S. Ito, T.N. Murakami, P. Comte, P. Liska, C. Grätzel, M.K. Nazeeruddin, and M. Grätzel, Thin Solid Films 516, 4613 (2008).

    Article  Google Scholar 

  23. S. Ito, P. Chen, P. Comte, M.K. Nazeeruddin, P. Liska, P. Péchy, and M. Grätzel, Prog. Photovolt. 15, 603 (2007).

    Article  Google Scholar 

  24. M.K. Nazeeruddin, E. Baranoff, and M. Grätzel, Sol. Energy 85, 1172 (2011).

    Article  Google Scholar 

  25. S. Sarker, N.C.D. Nath, M.M. Rahman, S.S. Lim, A.J.S. Ahammad, W.Y. Choi, and J.J. Lee, J. Nanosci. Nanotechnol. 12, 5361 (2012).

    Article  Google Scholar 

  26. S.K. Dhungel and J.G. Park, Renew. Energy 35, 2776 (2010).

    Article  Google Scholar 

  27. P. Gemeiner and M. Mikula, Acta Chim. Slovaca 6, 29 (2013).

    Google Scholar 

  28. A.I.M. Valdivia, E.G. Galindo, M.J. Ariza, and M.J.G. Salinas, Sol. Energy 91, 263 (2013).

    Article  Google Scholar 

  29. V. Zardetto, G.D. Angelis, L. Vesce, V. Caratto, C. Mazzuca, J. Gasiorowski, A. Reale, A.D. Carlo, and T.M. Brown, Nanotechnology 24, 255401 (2013).

    Article  Google Scholar 

  30. G.W. Lee, S.Y. Bang, C. Lee, W.M. Kim, D. Kim, K. Kim, and N.G. Park, Curr. Appl. Phys. 9, 900 (2009).

    Article  Google Scholar 

  31. K. Fan, M. Liu, T. Peng, L. Ma, and K. Dai, Renew. Energy 35, 555 (2010).

    Article  Google Scholar 

  32. K.M. Lee, V. Suryanarayanan, and K.C. Ho, Sol. Energy Mater. Solar Cells 90, 2398 (2006).

    Article  Google Scholar 

  33. K.H. Park and C.K. Hong, Electrochem. Commun. 10, 1187 (2008).

    Article  Google Scholar 

  34. J. Wan, Y. Lei, Y. Zhang, Y. Leng, and J. Liu, Electrochim. Acta 59, 75 (2012).

    Article  Google Scholar 

  35. S. Furukawa, H. Iino, T. Iwamoto, K. Kukita, and S. Yamauchi, Thin Solid Films 518, 526 (2009).

    Article  Google Scholar 

  36. Z. Liu, K. Pan, M. Liu, Q. Zhang, J. Li, Y. Liu, Q. Lu, J. Li, D. Wang, Y. Bai, and T. Li, Thin Solid Films 484, 346 (2005).

    Article  Google Scholar 

  37. D.W. Seo, S. Sarker, N.C. DebNath, S.W. Choi, A.J.S. Ahammad, J.J. Lee, and W.G. Kim, Electrochim. Acta 55, 1483 (2010).

    Article  Google Scholar 

  38. Y. Park, Y.M. Jung, S. Sarker, J.J. Lee, Y. Lee, K. Lee, J.J. Oh, and S.W. Joo, Sol. Energy Mater. Sol. Cells 94, 857 (2010).

    Article  Google Scholar 

  39. Y.M. Jung, Y. Park, S. Sarker, J.J. Lee, U. Dembereldorj, and S.W. Joo, Sol. Energy Mater. Sol. Cells 95, 326 (2011).

    Article  Google Scholar 

  40. T.C. Wei, C.C. Wan, and Y.Y. Wang, Appl. Phys. Lett. 88, 103122 (2006).

    Article  Google Scholar 

  41. T.C. Wei, C.C. Wan, Y.Y. Wang, C.M. Chen, and H.S. Shiu, J. Phys. Chem. C 111, 4847 (2007).

    Article  Google Scholar 

  42. N.G. Park, J. Lagemaat, and A.J. Frank, J. Phys. Chem. B 104, 8989 (2000).

    Article  Google Scholar 

  43. P. Scherrer, Göttinger Nachr. Math. Phys. 2, 98 (1918).

    Google Scholar 

  44. J. Lagemaat, K.D. Benkstein, and A.J. Frank, J. Phys. Chem. B 105, 12433 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the National Science Council, Taiwan (NSC 102-2221-E-005-009-MY3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Ming Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, TC., Wu, CC., Huang, CH. et al. Effects of Ethyl Cellulose on Performance of Titania Photoanode for Dye-sensitized Solar Cells. J. Electron. Mater. 45, 6192–6199 (2016). https://doi.org/10.1007/s11664-016-4719-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4719-7

Keywords

Navigation