Skip to main content
Log in

Calculation of the High-Temperature Point Defects Structure in Te-Rich CdTe

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A thermodynamic equilibrium model for CdTe annealed under Te vapor is established, in which possible point defects and a defect reaction existing in undoped and In-doped Te-rich CdTe crystals are taken into consideration. Independent point defects, such as VCd, Cdi, and Tei, as well as defect complexes, namely TeCd-VCd (B complex), \( {\hbox{Te}}_{\rm{Cd}}^{2 + } \)-\( {\hbox{V}}_{\rm{Cd}}^{2 - } \) (D complex), \( {\hbox{In}}_{\rm{Cd}}^{ + } \)-\( {\hbox{V}}_{\rm{Cd}}^{ - } \) (A-center) and Tei-VCd (TeCd), are discussed based on the defect chemistry theory. More specially, the mass action law and quasi-chemical equations are used to calculate defects concentration and Fermi level in undoped and doped CdTe crystals with different indium concentrations. It is found that the Fermi level is controlled by a \( {\hbox{V}}_{\rm{Cd}}^{2 - } \), TeCd, and B/D-complex in undoped crystal. The concentration of VCd drops down in an obvious manner and that of TeCd rises for doped crystal with increasing [In].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Partovi, J. Millerd, E.M. Garmire, M. Ziari, W.H. Steier, S.B. Trivedi, and M.B. Klein, Appl. Phys. Lett. 57, 846 (1990).

    Article  Google Scholar 

  2. R.W. Birkmire, E. Eser, and M.L. Fearheiley, Annu. Rev. Mater. Sci. 27, 625 (1997).

    Article  Google Scholar 

  3. A. Owens, J. Synchrotron Radiat. 13, 143 (2006).

    Article  Google Scholar 

  4. S.D. Sordo, L. Abbene, E. Caroli, A.M. Mancini, A. Zappettini, and P. Ubertini, Sensors 9, 3491 (2009).

    Article  Google Scholar 

  5. G.A. Armantrout, S.P. Swierkowski, J.W. Sherohman, and J.H. Yee, IEEE Trans. Nucl. Sci. 24, 121 (1977).

    Article  Google Scholar 

  6. V. Lordi, J. Cryst. Growth 379, 84 (2013).

    Article  Google Scholar 

  7. M. Chu, S. Terterian, D. Ting, C.C. Wang, H.K. Gurgenian, and S. Mesropian, Appl. Phys. Lett. 79, 2728 (2001).

    Article  Google Scholar 

  8. M. Fiederle, C. Eiche, M. Salk, R. Schwarz, K.W. Benz, W. Stadler, D.M. Hofmann, and B.K. Meyer, J. Appl. Phys. 84, 6689 (1998).

    Article  Google Scholar 

  9. M. Chu, S. Terterian, D. Ting, C.C. Wang, J.D. Benson, J.H. Dinan, R.B. James, and A. Burger, J. Electron. Mater. 32, 778 (2003).

    Article  Google Scholar 

  10. R. Fang and R.F. Brebrick, J. Phys. Chem. Solids 57, 443 (1996).

    Article  Google Scholar 

  11. J.H. Greenberg, V.N. Guskov, V.B. Lazarev, and O.V. Shebershneva, Mater. Res. Bull. 27, 847 (1992).

    Article  Google Scholar 

  12. M.A. Berding, S.M. Van, and A.T. Paxton, Phys. Rev. B 50, 1519 (1994).

    Article  Google Scholar 

  13. P. Rudolph, S. Kawasaki, S. Yamashita, S. Yamamoto, Y. Usuki, Y. Konagaya, S. Matada, and T. Fukuda, J. Cryst. Growth 161, 28 (1996).

    Article  Google Scholar 

  14. R. Grill, J. Franc, P. Hoschl, I. Turkevych, E. Belas, P. Moravec, M. Fiederle, and K.W. Benz, IEEE Trans. Nucl. Sci. 49, 1270 (2002).

    Article  Google Scholar 

  15. M.A. Berding, Phys. Rev. B 60, 8943 (1999).

    Article  Google Scholar 

  16. M. Du, H. Takenaka, and D.J. Singh, J. Appl. Phys. 104, 093521 (2008).

    Article  Google Scholar 

  17. S. Wei and S. Zhang, Phys. Status Solidi B 229, 305 (2002).

    Article  Google Scholar 

  18. R.F. Brebrick, J. Electrochem. Soc. 118, 2014 (1971).

    Article  Google Scholar 

  19. R. Grill, J. Franc, P. Hoschl, I. Turkevych, E. Belas, and P. Moravec, IEEE Trans. Nucl. Sci. 52, 1925 (2005).

    Article  Google Scholar 

  20. Y. Li, G. Ma, and W. Jie, J. Cryst. Growth 256, 266 (2003).

    Article  Google Scholar 

  21. R. Soundararajan, K.G. Lynn, S. Awadallah, C. Szeles, and S. Wei, J. Electron. Mater. 35, 1333 (2006).

    Article  Google Scholar 

  22. W. Stadler, D.M. Hofmann, H.C. Alt, T. Muschik, B.K. Meyer, E. Weigel, G.M. Vogt, M. Salk, E. Rupp, and K.W. Benz, Phys. Rev. B 51, 10619 (1995).

    Article  Google Scholar 

  23. R. Grill, P. Fochuk, and J. Franc, Phys. Status Solidi B 243, 787 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, S., Wang, T., Liu, H. et al. Calculation of the High-Temperature Point Defects Structure in Te-Rich CdTe. J. Electron. Mater. 45, 4747–4754 (2016). https://doi.org/10.1007/s11664-016-4711-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4711-2

Keywords

Navigation