Interfacial Characterizations of a Nickel-Phosphorus Layer Electrolessly Deposited on a Silane Compound-Modified Silicon Wafer Under Thermal Annealing

Abstract

Front-side metallization of a Si wafer was carried out using electroless deposition of nickel-phosphorus (Ni-P) catalyzed by polyvinylpyrrolidone-capped palladium nanoclusters (PVP-nPd). A 3-[2-(2-Aminoethylamino)ethylamino] propyl-trimethoxysilane (ETAS) layer was covalently bonded on the Si surface as bridge linker to the Pd cores of PVP-nPd clusters for improving adhesion between the Ni-P layer and the Si surface. To investigate the effects of an interfacial ETAS layer on the Ni silicide formation at the Ni-P/Si contact, the Ni-P-coated Si samples were thermally annealed via rapid thermal annealing (RTA) from 500°C to 900°C for 2 min. To compare with the ETAS sample, the sputtered Ni layer on Si and electroless Ni-P layer on ion-Pd-catalyzed Si (both are standard processes) were also investigated. The microstructural characterizations for the Ni-P or Ni layer deposited on the Si wafer were performed using x-ray diffractometer, scanning electron microscopy, and transmission electron microscopy. Our results showed that the ETAS layer acted as a barrier to slow the atomic diffusion of Ni toward the Si side. Although the formation of Ni silicides required a higher annealing temperature, the adhesion strength and contact resistivity measurements of annealed Ni-P/Si contacts showed satisfactory results, which were essential to the device performance and reliability during thermal annealing.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    A. Brenner, C. Chase, and G.E. Riddell, U.S. patent US 2,532,283 (1950).

  2. 2.

    J.F. Rohan, G. O’Riordan, and J. Boardman, Appl. Surf. Sci. 185, 289 (2002).

    Article  Google Scholar 

  3. 3.

    C.P. Lin and C.M. Chen, Microelectron. Reliab. 52, 385 (2012).

    Article  Google Scholar 

  4. 4.

    J.E. Lynch, P.E. Pehrsson, D.N. Leonard, and J.M. Calvert, J. Electrochem. Soc. 144, 1698 (1997).

    Article  Google Scholar 

  5. 5.

    C.R. Jr. Shipley, U.S. patent 3,011,920 (1961).

  6. 6.

    S.J. Cherng, C.M. Chen, W.P. Dow, C.H. Lin, and S.W. Chen, Electrochem. Solid State Lett. 14, P13 (2011).

    Article  Google Scholar 

  7. 7.

    T.C. Wei, T.C. Pan, C.M. Chen, K.C. Lai, and C.H. Wu, Electrochem. Commun. 54, 6 (2015).

    Article  Google Scholar 

  8. 8.

    W.J. Dressick, L.M. Kondracki, M.S. Chen, S.L. Brandow, E. Matijević, and J.M. Calvert, Colloids Surf. A 108, 101 (1996).

    Article  Google Scholar 

  9. 9.

    D. Zabetakis, W.J. Dressick, and A.C.S. Appl, Mater. Interfaces 1, 4 (2009).

    Article  Google Scholar 

  10. 10.

    T. Osaka, N. Takano, T. Kurokawa, T. Kaneko, and K.J. Ueno, J. Electrochem. Soc. 149, C573 (2002).

    Article  Google Scholar 

  11. 11.

    T. Osaka and M. Yoshino, Electrochim. Acta 53, 271 (2007).

    Article  Google Scholar 

  12. 12.

    M.C. Raval and C.S. Solanki, J. Sol. Energy 2013, 1 (2013).

    Article  Google Scholar 

  13. 13.

    E.J. Lee, D.S. Kim, and S.H. Lee, Sol. Energy Mater. Sol. Cells 74, 65 (2002).

    Article  Google Scholar 

  14. 14.

    G.K. Reeves and H.B. Harrison, IEEE Electron Device Lett. 3, 111 (1982).

    Article  Google Scholar 

  15. 15.

    Q.X. Mai, R.D. Daniels, and H.B. Harpalani, Thin Solid Films 166, 235 (1988).

    Article  Google Scholar 

  16. 16.

    N.M. Martyak, Chem. Mater. 6, 1667 (1994).

    Article  Google Scholar 

  17. 17.

    K.H. Hur, J.H. Jeong, and D.N. Lee, J. Mater. Sci. 25, 2573 (1990).

    Article  Google Scholar 

  18. 18.

    M.O. Alam, Y.C. Chan, and K.N. Tu, J. Appl. Phys. 94, 4108 (2003).

    Article  Google Scholar 

  19. 19.

    K.J. Lee and P. Nash, Phase Diagrams of Binary Nickel Alloys (Park: ASM Materials, 1991).

    Google Scholar 

  20. 20.

    G. Ottaviani, J. Vac. Sci. Technol. 16, 1112 (1979).

    Article  Google Scholar 

  21. 21.

    F.F. Zhao, J.Z. Zheng, Z.X. Shen, T. Osipowicz, W.Z. Gao, and L.H. Chan, Microelectron. Eng. 71, 104 (2004).

    Article  Google Scholar 

  22. 22.

    J. Foggiato, W.S. Yoo, M. Ouaknine, T. Murakami, and T. Fukada, Mater. Sci. Eng. B. 56, 114–115 (2004).

    Google Scholar 

  23. 23.

    S. Abhaya, G. Amarendra, S. Kalavathi, P. Gopalan, M. Kamruddin, A.K. Tyagi, V.S. Sastry, and C.S. Sundar, Appl. Surf. Sci. 253, 3799 (2007).

    Article  Google Scholar 

  24. 24.

    G. Ottaviani, K. Tu, and J. Mayer, Phys. Rev. B. 24, 3354 (1981).

    Article  Google Scholar 

  25. 25.

    L. Tous, D.H. Van Dorp, R. Russell, J. Das, M. Aleman, H. Bender, J. Meersschaut, K. Opsomer, J. Poortmans, and R. Mertens, Energy Procedia (Amsterdam: Elsevier, 2011), pp. 39–46.

    Google Scholar 

  26. 26.

    H. Pfeiffer, F. Tancret, and T. Brousse, Mater. Chem. Phys. 92, 534 (2005).

    Article  Google Scholar 

  27. 27.

    V.A. Chaudhari and C.S. Solanki, Solar Energy Mater. Solar Cells 94, 2094 (2010).

    Article  Google Scholar 

  28. 28.

    C. Boulord, A. Kaminski, B. Canut, S. Cardinal, and M. Lemiti, J. Electrochem. Soc. 157, H742 (2010).

    Article  Google Scholar 

  29. 29.

    M.V. Sullivan and J.H.J. Eigler, J. Electrochem. Soc. 104, 226 (1957).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Chih-Ming Chen or Tzu-Chien Wei.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lai, K., Wu, P., Chen, C. et al. Interfacial Characterizations of a Nickel-Phosphorus Layer Electrolessly Deposited on a Silane Compound-Modified Silicon Wafer Under Thermal Annealing. Journal of Elec Materi 45, 4813–4822 (2016). https://doi.org/10.1007/s11664-016-4708-x

Download citation

Keywords

  • Annealing
  • diffusion
  • microstructures
  • electroless
  • nickel