Skip to main content
Log in

Preparation of SnS/CdS Co-sensitized TiO2 Photoelectrodes for Quantum Dots Sensitized Solar Cells

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

TiO2 porous films have been prepared by electrophoresis deposition method, while tin sulfide (SnS) and cadmium sulfide quantum dots (QDs) have been deposited by a simple and inexpensive successive ionic layer adsorption and reaction method. The CdS and SnS QDs modifications expanded the photoresponse range of TiO2 nanoparticles from the ultraviolet region to visible range. Such prepared SnS/CdS/TiO2 films were used as photo-anodes to assemble QDs sensitized solar cells with I/I3 liquid electrolyte and Pt-coated fluorine-doped tin oxide glass counter electrode. The best resulting cells had an open circuit voltage of 520 mV, a short circuit current density of 2.972 mA cm−2, a fill factor of 0.61, and with a conversion efficiency of 0.936%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.G. Deepa and J. Nagaraju, Mater. Sci. Eng. B 177, 1023 (2012).

    Article  Google Scholar 

  2. N. Shukla and M.M. Nigra, Luminescence 25, 14 (2010).

    Google Scholar 

  3. J.H. Yoon, Mater. Lett. 59, 1430 (2004).

    Article  Google Scholar 

  4. S. Baskoutas and A.F. Terzis, J. Appl. Phys. 99, 013708 (2006).

    Article  Google Scholar 

  5. T.D.T. Ung, Adv. Nat. Sci: Nanosci. Nanotechnol. 3, 043001 (2012).

    Google Scholar 

  6. J.H. Bang and P.V. Kamat, ACS Nano 3, 1467 (2009).

    Article  Google Scholar 

  7. Y. Luo and L.W. Wang, ACS Nano 4, 91 (2010).

    Article  Google Scholar 

  8. M.Z. Rossi, M.G. Lupo, R. Krahne, L. Manna, and G. Lanzani, Nanoscale 2, 931 (2010).

    Article  Google Scholar 

  9. X.H. Su, S. Chakrabarti, A.D.S. Roberts, J. Singh, and P. Bhattacharya, Electron. Lett. 40, 1082 (2004).

    Article  Google Scholar 

  10. K. Surana, R.M. Mehra, B. Bhattacharya, H.-W. Rhee, A.R. Polu, and P.K. Singh, Renew. Sust. Energ. Rev. 52, 1083 (2015).

    Article  Google Scholar 

  11. W.J. Yue, S.K. Han, R.X. Peng, W. Shen, H.W. Geng, F. Wu, S.W. Tao, and M.T. Wang, J. Mater. Chem. 20, 7570 (2010).

    Article  Google Scholar 

  12. M. Wang, W. Chen, J. Zai, S. Huang, Q. He, W. Zhang, Q. Qiao, and X. Qian, J. Power Sources 299, 212 (2015).

    Article  Google Scholar 

  13. Z. Huang, X. Zou, and H. Zhou, Mater. Lett. 95, 139 (2013).

    Article  Google Scholar 

  14. S.B. Rawal, S.D. Sung, S.-Y. Moon, Y.-J. Shin, and W.I. Lee, Mater. Lett. 82, 240 (2012).

    Article  Google Scholar 

  15. A. Tubtimtae and M.-W. Lee, Thin Solid Films 526, 225 (2012).

    Article  Google Scholar 

  16. S. Rühle, M. Shalom, and A. Zaban, ChemPhysChem 11, 2290 (2010).

    Article  Google Scholar 

  17. P.V. Kamat, J.A. Christians, and J.G. Radich, Langmuir 30, 5716 (2014).

    Article  Google Scholar 

  18. P.V. Kamat, J. Phys. Chem. Lett. 4, 908 (2013).

    Article  Google Scholar 

  19. P.V. Kamat, J. Phys. Chem. C 112, 18737 (2008).

    Article  Google Scholar 

  20. H. Jun, M. Careem, and A. Arof, Renew. Sust. Energ. Rev. 22, 148 (2013).

    Article  Google Scholar 

  21. L. Jiang, T. You, and W.-Q. Deng, Nanotechnology 24, 415401 (2013).

    Article  Google Scholar 

  22. J. Zhao, J. Wu, F. Yu, X. Zhang, Z. Lan, and J. Lin, Electrochim. Acta 96, 110 (2013).

    Article  Google Scholar 

  23. M. Eskandari and V. Ahmadi, Electrochim. Acta 165, 239 (2015).

    Article  Google Scholar 

  24. H. Chen, W. Li, H. Liu, and L. Zhu, Sol. Energy 84, 1201 (2010).

    Article  Google Scholar 

  25. L.J. Diguna, Q. Shen, J. Kobayashi, and T. Toyoda, Appl. Phys. Lett. 91, 023116 (2007).

    Article  Google Scholar 

  26. V. González-Pedro, C. Sima, G. Marzari, P.P. Boix, S. Gimenez, Q. Shen, T. Dittrich, and I. Mora-Sero, Phys. Chem. Chem. Phys. 15, 13835 (2013).

    Article  Google Scholar 

  27. I. Konovalov, V. Emelianov, and R. Linke, Sol. Energy 111, 1 (2015).

    Article  Google Scholar 

  28. Z. Pan, I. Mora-Seró, Q. Shen, H. Zhang, Y. Li, K. Zhao, J. Wang, X. Zhong, and J. Bisquert, J. Am. Chem. Soc. 136, 9203 (2014).

    Article  Google Scholar 

  29. P.K. Santra, P.V. Nair, K. George Thomas, and P.V. Kamat, J. Phys. Chem. Lett. 4, 722 (2013).

    Article  Google Scholar 

  30. Q. Shen, Y. Ayuzawa, K. Katayama, T. Sawada, and T. Toyoda, Appl. Phys. Lett. 97, 263113 (2010).

    Article  Google Scholar 

  31. Y. Zhang, J. Zhu, X. Yu, J. Wei, L. Hu, and S. Dai, Sol. Energy 86, 964 (2012).

    Article  Google Scholar 

  32. J. Chang, T. Oshima, S. Hachiya, K. Sato, T. Toyoda, K. Katayama, and Q. Shen, Sol. Energy 122, 307 (2015).

    Article  Google Scholar 

  33. P. Sinsermsuksakul, J. Heo, W. Noh, A.S. Hock, and R.G. Gordon, Adv. Energy Mater. 1, 1116 (2011).

    Article  Google Scholar 

  34. L. Sun, R. Haight, P. Sinsermsuksakul, S.B. Kim, H.H. Park, and R.G. Gordon, Appl. Phys. Lett. 103, 181904 (2013).

    Article  Google Scholar 

  35. P. Sinsermsuksakul, K. Hartman, S.B. Kim, J. Heo, L.Z. Sun, H.H. Park, R. Chakraborty, T. Buonassisi, and R.G. Gordon, Appl. Phys. Lett. 102, 053901 (2013).

    Article  Google Scholar 

  36. B. Ghosh, M. Das, P. Banerjee, and S. Das, Mater. Sol. Cells 92, 1099 (2008).

    Article  Google Scholar 

  37. K.T.R. Reddy, N.K. Reddy, and R.W. Miles, Sol. Energy Mater. Sol. Cells 90, 3041 (2006).

    Article  Google Scholar 

  38. Z. Deng, D. Han, and Y. Liu, Nanoscale 3, 4346 (2011).

    Article  Google Scholar 

  39. H. Liu, Y. Liu, Z. Wang, and P. He, Nanotechnology 21, 105707 (2010).

    Article  Google Scholar 

  40. Y. Oda, H. Shen, L. Zhao, J. Li, M. Iwamoto, and H. Lin, Sci. Technol. Adv. Mater. 15, 035006 (2014).

    Article  Google Scholar 

  41. M.J. Santillán, F. Membrives, N. Quaranta, and A.R. Boccaccini, J. Nanopart. Res. 10, 787 (2008).

    Article  Google Scholar 

  42. A.R. Boccaccini and I. Zhitomirsky, Curr. Opin. Solid State Mater. Sci. 6, 251 (2002).

    Article  Google Scholar 

  43. O. Van der Biest, S. Put, and A. Vleugels, J. Mater. Sci. 39, 779 (2004).

    Article  Google Scholar 

  44. P. Sarkar and P.S. Nicholson, J. Am. Ceram. Soc. 79, 1987 (1996).

    Article  Google Scholar 

  45. C. Kaya, F. Kaya, A.R. Boccaccini, and K.K. Chawla, Acta Mater. 49, 1189 (2001).

    Article  Google Scholar 

  46. H. Chang, H.-T. Su, W.-A. Chen, K.D. Huang, S.-H. Chien, S.-L. Chen, and C.-C. Chen, Sol. Energy 84, 130 (2010).

    Article  Google Scholar 

  47. S. Hao, J. Wu, Y. Huang, and J. Lin, Sol. Energy 2, 209 (2006).

    Article  Google Scholar 

  48. M. Grätzel, Nature 414, 338 (2001).

    Article  Google Scholar 

  49. G.V. Chris and J. Neugebauer, Nature 423, 626 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported financially by the Natural Science Foundation of Qinghai province (No. 2013-Z-924Q), the Research Program of Application Foundation of Qinghai Province (No. 2015-ZJ-738), and Joint Foundation of Beijing University of Technology-Qinghai Nationalities University Cooperation (312000514315008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Long Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, YL., Song, P. & Zhao, SQ. Preparation of SnS/CdS Co-sensitized TiO2 Photoelectrodes for Quantum Dots Sensitized Solar Cells. J. Electron. Mater. 45, 4952–4957 (2016). https://doi.org/10.1007/s11664-016-4647-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4647-6

Key words

Navigation