Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

First-Principles Study on the MAX Phases Ti n+1GaN n (n = 1,2, and 3)

Abstract

We have performed first-principles density functional theory calculations within generalized-gradient approximation to obtain the structural, mechanical, electronic, and dynamic properties of Ti n+1GaN n compounds. In order to examine the stability of these compounds, formation enthalpies, single-crystal elastic constants, and phonon dispersion curves were calculated. We show that all compounds are stable, while α-Ti4GaN3 is the most stable. The density of states calculations also demonstrate that all of the compounds are metallic. Additionally, bonding nature and related characteristics such as Mulliken atomic charges and bond overlap populations were investigated. Furthermore, thermodynamic properties were calculated by means of phonon dispersion curves. The results are compared in this work with available experimental values and theoretical calculations.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    M.W. Barsoum, Prog. Solid State Chem. 28, 201 (2000).

  2. 2.

    Z.J. Yang, J. Li, R.F. Linghu, X.L. Cheng, and X.D. Yang, J. Alloys Comp. 574, 573 (2013).

  3. 3.

    X. Hea, Y. Bai, Y. Li, C. Zhu, and M. Li, Solid State Commun. 149, 564 (2009).

  4. 4.

    M.W. Barsoum, Physical Properties of the MAX Phases, Encyclopedia of Materials: Science and Technology (Amsterdam: Elsevier, 2006).

  5. 5.

    M. Dahlqvist, B. Alling, and J. Rosén, Phys. Rev. B. 81, 220102 (2010).

  6. 6.

    V.J. Keast, S. Harris, and D.K. Smith, Phys. Rev. B 80, 214113 (2009).

  7. 7.

    A. Bouhemadou, Solid State Sci. 11, 1875 (2009).

  8. 8.

    B. Manoun, S. Kulkarni, N. Pathak, S.K. Saxena, S. Amini, and M.W. Barsoumb, J. Alloys Comp. 505, 328 (2010).

  9. 9.

    I.R. Shein and A.L. Ivanovskii, Comput. Mater. Sci. 65, 104 (2012).

  10. 10.

    P. Eklund, M. Beckers, U. Jansson, H. Högberg, and L. Hultman, Thin Solid Films 518, 1851 (2010).

  11. 11.

    M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, and M.C. Payne, J. Phys. 14, 2717 (2002).

  12. 12.

    J.P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).

  13. 13.

    D.R. Hamann, M. Schlüter, and C. Chiang, Phys. Rev. Lett. 43, 1494 (1979).

  14. 14.

    N. Troullier and J.L. Martins, Phys. Rev. B. 43, 1993 (1991).

  15. 15.

    H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).

  16. 16.

    T.H. Fischer and J. Almlof, J. Phys. Chem. 96, 9768 (1992).

  17. 17.

    J.H. Xu, T. Oguchi, and A.J. Freeman, Phys. Rev. B 35, 6940 (1987).

  18. 18.

    J.H. Xu and A.J. Freeman, Phys. Rev. B 40, 11927 (1989).

  19. 19.

    B. Montanari and N.M. Harrison, Chem. Phys. Lett. 364, 528 (2002).

  20. 20.

    E. Deligoz, K. Colakoglu, and Y.O. Ciftci, J. Phys. Chem. Solids 68, 482 (2007).

  21. 21.

    B.A. Auld, Acustic Fields and Waves in Solid, 1st ed. (New York: John Wiley & Sons, 1973), 391.

  22. 22.

    N.W. Ashcroft and N.D. Mermin, Solid State Physics, 1st ed. (Philadelphia: Saunders, 1976), 447.

  23. 23.

    J.F. Nye, Physical Properties of Crystals, 1st ed. (Oxford: Clarendon, 1957), 148.

  24. 24.

    Z.J. Wu, E.J. Zhao, H.P. Xiang, X.F. Hao, X.J. Liu, and J. Meng, Phys. Rev. B 76, 054115 (2007).

  25. 25.

    P. Rong-Kai, M. Li, B. Nan, W. Ming-Hui, L. Peng-Bo, T. Bi-Yu, P. Li-Ming, and D. Wen-Jiang, Phys. Scr. 87, 015601 (2013).

  26. 26.

    R. Hill, Proc. Phys. Soc. Lond. A 65, 349 (1952).

  27. 27.

    M. Rajagopalan, S.P. Kumar, and R. Anuthama, Phys. B 405, 1817 (2010).

  28. 28.

    N. Korozlu, K. Colakoglu, E. Deligoz, and S. Aydin, J. Alloys Comp. 546, 157 (2013).

  29. 29.

    S.F. Pugh, Phil. Mag. Ser. 45, 823 (1954).

  30. 30.

    V.V. Bannikov, I.R. Shein, and A.L. Ivanovskii, Phys. Stat. Sol. (RRL). 3, 89 (2007).

  31. 31.

    X.Q. Chen, H. Niu, D. Li, and Y. Li, Intermetallics 19, 1275 (2011).

  32. 32.

    S.D. Gironcoli, A.D. Corso, and P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001).

  33. 33.

    P.K. Jha, Phys. Rev. B 72, 214502 (2005).

Download references

Acknowledgements

This work was partly supported by the State Planning Organization of Turkey under Grant No. 2011K120290. Some of the calculations were performed in the high performance computing center (HPCC) at Gazi University.

Author information

Correspondence to Engin Deligoz.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Surucu, G., Colakoglu, K., Deligoz, E. et al. First-Principles Study on the MAX Phases Ti n+1GaN n (n = 1,2, and 3). Journal of Elec Materi 45, 4256–4264 (2016). https://doi.org/10.1007/s11664-016-4607-1

Download citation

Keywords

  • MAX phases
  • electronic properties
  • phonons
  • mechanical properties
  • first-principles