Dielectric Properties and Complex Impedance Analysis of BT–BMT–BS Ceramics

Abstract

Polycrystalline (1−x)BaTiO3–0.5xBi(Mg0.5Ti0.5)O3–0.5xBiScO3 (x = 0.4, 0.45, 0.5, and 0.55) samples have been prepared via a conventional mixed-oxide solid-state sintering route. Phase analysis of the samples with x ≥ 0.45 revealed formation of single-phase cubic structure, while at x = 0.4, a minor secondary phase formed. Complex impedance spectroscopy of the samples revealed more than one type of transport mechanism (grain/bulk, grain boundary, and electrode effect). At x = 0.4, the grain boundary was less conducting than the grain; however, grains dominated the total conductivity with further increase in x. At elevated temperatures, the higher conductivity values suggest semiconducting-like behavior with negative temperature coefficient of resistivity. The composition with x = 0.55 exhibited a temperature-stable relative permittivity (ε r) of 1430 (±15% over 127°C to 500°C) and dielectric loss (tan δ) of <0.025 (over 150°C to 370°C).

This is a preview of subscription content, access via your institution.

References

  1. 1.

    D.S. Tinberg and S. Trolier-McKinstry, J. Appl. Phys. 101, 024112 (2007).

    Article  Google Scholar 

  2. 2.

    R.E. Cohen, Nature 358, 136 (1992).

    Article  Google Scholar 

  3. 3.

    Y. Yuan, S.R. Zhang, X.H. Zhou, B. Tang, and B. Li, J. Electron. Mater. 38, 706 (2009).

    Article  Google Scholar 

  4. 4.

    P. Hagler, P. Henson, and R.W. Jhonson, IEEE Trans. Ind. Electron. 58, 2673 (2011).

    Article  Google Scholar 

  5. 5.

    M.M. Vijatovic, J.D. Bobic, and B.D. Stojanovic, Sci. Sinter. 40, 235 (2008).

    Article  Google Scholar 

  6. 6.

    H. Ogihara, C.A. Randall, and S. Trolier-McKinstry, J. Am. Ceram. Soc. 92, 1719 (2009).

    Article  Google Scholar 

  7. 7.

    F. Zhu, M.B. Ward, T.P. Comyn, A.J. Bell, and S.J. Milne, IEEE Trans. Ultrason. Ferroelectr. 58, 1811 (2011).

    Article  Google Scholar 

  8. 8.

    R. Dittmer, W. Jo, D. Damjanovic, and J. Rödel, J. Appl. Phys. 109, 034107 (2011).

    Article  Google Scholar 

  9. 9.

    B. Xiong, H. Hao, S. Zhang, H. Liu, and M. Cao, J. Am. Ceram. Soc. 94, 3412 (2011).

    Article  Google Scholar 

  10. 10.

    Q. Zhang, Z. Li, F. Li, Z. Xu, and S. Zhang, J. Am. Ceram. Soc. 94, 4335 (2011).

    Article  Google Scholar 

  11. 11.

    X. Chen, J. Chen, D. Ma, L. Fang, and H. Zhou, Ceram. Int. 41, 2081 (2015).

    Article  Google Scholar 

  12. 12.

    A. Zeb, Y. Bai, T. Button, S.J. Milne, and W. Jo, J. Am. Ceram. Soc. 97, 2479 (2014).

    Article  Google Scholar 

  13. 13.

    R.D. Shannon, Acta Crystallogr. Sect. A 32, 751 (1976).

    Article  Google Scholar 

  14. 14.

    D. Ma, X. Chen, G. Huang, J. Chen, H. Zhou, and L. Fang, Ceram. Int. 41, 7157 (2015).

    Article  Google Scholar 

  15. 15.

    H. Ogihara, C.A. Randall, and S. Trolier-McKinstry, J. Am. Ceram. Soc. 92, 110 (2009).

    Article  Google Scholar 

  16. 16.

    N. Raengthon and D.P. Cann, J. Am. Ceram. Soc. 95, 1604 (2012).

    Article  Google Scholar 

  17. 17.

    N. Raengthon, T. Sebastian, D. Cumming, I.M. Reaney, D.P. Cann, and J. Roedel, J. Am. Ceram. Soc. 95, 3554 (2012).

    Article  Google Scholar 

  18. 18.

    F.D. Morrison, D.C. Sinclair, and A.R. West, J. Am. Ceram. Soc. 84, 531 (2001).

    Article  Google Scholar 

  19. 19.

    J.T. Irvine, D.C. Sinclair, and A.R. West, Adv. Mater. 2, 132 (1990).

    Article  Google Scholar 

  20. 20.

    M. Shah, M. Nadeem, M. Idrees, M. Atif, and M. Akhtar, J. Magn. Magn. Mater. 332, 61 (2013).

    Article  Google Scholar 

  21. 21.

    S. Sen, R.N.P. Choudhary, and P. Pramanik, Phys. B 387, 56 (2007).

    Article  Google Scholar 

  22. 22.

    C. Ang, Z. Yu, and L. Cross, Phys. Rev. B 62, 228 (2000).

    Article  Google Scholar 

  23. 23.

    M. Ramesh and K. Ramesh, Int. J. Mod. Phys. B 29, 1550119 (2015).

    Article  Google Scholar 

Download references

Acknowledgement

The authors thank the Higher Education Commission (HEC) of Pakistan for a research fellowship at the University of Sheffield, UK.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Raz Muhammad.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Muhammad, R., Khesro, A. & Uzair, M. Dielectric Properties and Complex Impedance Analysis of BT–BMT–BS Ceramics. Journal of Elec Materi 45, 4083–4088 (2016). https://doi.org/10.1007/s11664-016-4589-z

Download citation

Keywords

  • Dielectric properties
  • BaTiO3
  • impedance spectroscopy