Journal of Electronic Materials

, Volume 45, Issue 8, pp 4390–4399 | Cite as

Sn-Ag-Cu Nanosolders: Solder Joints Integrity and Strength

  • Ali RoshanghiasEmail author
  • Golta Khatibi
  • Andriy Yakymovych
  • Johannes Bernardi
  • Herbert IpserEmail author
Open Access


Although considerable research has been dedicated to the synthesis and characterization of lead-free nanoparticle solder alloys, only very little has been reported on the reliability of the respective joints. In fact, the merit of nanoparticle solders with depressed melting temperatures close to the Sn-Pb eutectic temperature has always been challenged when compared with conventional solder joints, especially in terms of inferior solderability due to the oxide shell commonly present on the nanoparticles, as well as due to compatibility problems with common fluxing agents. Correspondingly, in the current study, Sn-Ag-Cu (SAC) nanoparticle alloys were combined with a proper fluxing vehicle to produce prototype nanosolder pastes. The reliability of the solder joints was successively investigated by means of electron microscopy and mechanical tests. As a result, the optimized condition for employing nanoparticles as a competent nanopaste and a novel procedure for surface treatment of the SAC nanoparticles to diminish the oxide shell prior to soldering are being proposed.


Nanosolders nanojoints Pb-free solders nanoparticles SAC 


  1. 1.
    H. Jiang, K. Moon, and C.P. Wong, Microelectron. Reliab. 53, 1968 (2013).CrossRefGoogle Scholar
  2. 2.
    J. Sopousek, J. Vrestal, A. Zemanova, and J. Bursik, J. Min. Metall. Sect. B: Metall. 48, 419 (2012).CrossRefGoogle Scholar
  3. 3.
    K.J. Puttlitz and K.A. Stalter, Handbook of Lead-Free Solder Technology for Microelectronic Assemblies (Marcel Dekker Inc., New York, 2004), p. 239Google Scholar
  4. 4.
    J.P. Koppes, K.A. Grossklaus, A.R. Muza, R.R. Revur, S. Sengupta, A. Rae, E.A. Stach, and C.A. Handwerker, Mater. Sci. Eng. B 177, 197 (2012).CrossRefGoogle Scholar
  5. 5.
    Y. Shu, K. Rajathurai, F. Gao, Q. Cui, and Z. Gu, J. Alloys Compd. 626, 391 (2015).CrossRefGoogle Scholar
  6. 6.
    F. Frongia, M. Pilloni, and A. Scano, J. Alloys Compd. 623, 7 (2015).CrossRefGoogle Scholar
  7. 7.
    A. Roshanghias, A. Yakymovych, J. Bernardi, and H. Ipser, Nanoscale 7, 5843 (2015).CrossRefGoogle Scholar
  8. 8.
    Y. Gao, C. Zou, B. Yang, Q. Zhai, J. Liu, E. Zhuravlev, and C. Schick, J. Alloys Compd. 484, 777 (2009).CrossRefGoogle Scholar
  9. 9.
    A. Roshanghias, J. Vrestal, A. Yakymovych, K.W. Richter, and H. Ipser, CALPHAD 49, 101 (2015).CrossRefGoogle Scholar
  10. 10.
    K.C. Yung, C.M.T. Law, C.P. Lee, B. Cheung, and T.M. Yue, J. Electron. Mater. 41, 313 (2012).CrossRefGoogle Scholar
  11. 11.
    Solder Paste Task Group, Requirements for Soldering Pastes “J-STD-005” (Electronic Industries Alliance and IPC, Arlington, VA, 1995)Google Scholar
  12. 12.
    J.S. Hwang, Solder Paste in Electronics Packaging, (Springer, New York, 2012), p. 52Google Scholar
  13. 13.
    Association Connecting Electronics Industries (IPC), Acceptability of Electronic Assemblies “IPC-A-610” (Bannockburn, IL, 2010)Google Scholar
  14. 14.
    H.M. Henao, C. Masuda, and K. Nogita, Int. J. Miner. Process. 137, 98 (2015).CrossRefGoogle Scholar
  15. 15.
    F. Gao, K. Rajathurai, Q. Cui, G. Zhou, I. NkengforAcha, and Z. Gu, Appl. Surf. Sci. 258, 7507 (2012).CrossRefGoogle Scholar
  16. 16.
    B.S. Kim, J.C. Lee, H.S. Yoon, and S. Kim, Mater. Trans. 52, 1814 (2011).CrossRefGoogle Scholar
  17. 17.
    S. Itoh and K. Maruyama, High Temp. Mater. Process 30, 317 (2011).CrossRefGoogle Scholar
  18. 18.
    M. Pecht, Soldering Processes and Equipment (Wiley, New York, 1993), p. 9.Google Scholar
  19. 19.
    V. Simic and Z. Marinkovic, J. Less Common Met. 95, 259 (1983).CrossRefGoogle Scholar
  20. 20.
    A. Roshanghias, A.H. Kokabi, Y. Miyashita, Y. Mutoh, and H.R. Madaah-Hosseini, J. Mater. Sci. 24, 839 (2013).Google Scholar
  21. 21.
    P. Zimprich, A. Betzwar-Kotas, G. Khatibi, B. Weiss, and H. Ipser, J. Mater. Sci. 19, 383 (2008).Google Scholar
  22. 22.
    G.A. Storaska and J.M. Howe, Mater. Sci. Eng., A 368, 183 (2004).CrossRefGoogle Scholar
  23. 23.
    J. Emsley, The Elements (Clarendon Press, Oxford, 1989), p. 196.Google Scholar
  24. 24.
    R.W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, 4th ed. (Wiley, New York, 1996), p.␣11, 22, 45, 233.Google Scholar
  25. 25.
    R. Garrigos, P. Cheyssac, and R. Kofman, Z. Phys. D 12, 497 (1989).CrossRefGoogle Scholar
  26. 26.
    W. Hu, S. Xiao, J. Yang, and Z. Zhang, Eur. Phys. J. B 45, 547 (2005).CrossRefGoogle Scholar
  27. 27.
    A. Pomogailo and G.I. Dzhardimalieva, Nanostructured Materials Preparation via Condensation Ways (Springer, Dordrecht, 2014), p. 13Google Scholar

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Inorganic Chemistry (Materials Chemistry)University of ViennaViennaAustria
  2. 2.Faculty of Technical ChemistryVienna University of TechnologyViennaAustria
  3. 3.USTEMVienna University of TechnologyViennaAustria

Personalised recommendations