Skip to main content
Log in

Theoretical and Experimental Exploration of Breakdown Phenomena in an Argon-Filled GaP Device

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A plasma device with large diameter and short interelectrode distance has been designed and implemented. Theoretical modeling and simulations have been carried out for different interelectrode distances, and experimental results obtained under different pressures p, both with argon atmosphere. The device produces direct-current (dc) discharges in the parallel-plate electrode configuration, with gallium phosphide (GaP) semiconductor at one side and SnO2-coated glass conducting material at the other side, separated by gas medium with width of 50 μm to 500 μm. The device can be operated under different values of interelectrode distance d, applied voltage U, and gas pressure p. Current–voltage characteristics and breakdown voltages have been found experimentally and theoretically. In addition, theoretical breakdown curves have been derived from simulations. The theory can also identify the space-charge density, thermal electron velocity, reduced electric field strength (E/N), electron density ne, and secondary-electron emission (γ). Comparison between experiment and theory shows that the theory can estimate the breakdown very well for low pressure and small interelectrode gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.W. Seo, S.Y. Bae, J. Park, H. Yang, M. Kang, S. Kim, J.C. Park, and S.Y. Lee, Appl. Phys. Lett 82, 3752 (2003).

    Article  Google Scholar 

  2. I. Fuss and D. Smart, Appl. Opt. 30, 4526 (1991).

    Article  Google Scholar 

  3. Z.G. Chen, L. Cheng, G.Q.M. Lu, and J. Zou, Nanotechnology 21, 375701 (2010).

    Article  Google Scholar 

  4. Q. Wu and X. Zhang, Appl. Phys. Lett. 70, 1784 (1997).

    Article  Google Scholar 

  5. F. Liu, Y.J. Song, Q.R. Xing, M.L. Hu, Y.F. Li, C.L. Wang, L. Chai, W.L. Zhang, A.M. Zheltikov, and C.Y. Wang, IEEE Photon. Technol. Lett. 22, 814 (2010).

    Article  Google Scholar 

  6. D. McIntosh, Q.G. Zhou, F.J. Lara, J. Landers, and J.C. Campbell, IEEE Photon. Technol. Lett. 23, 878 (2011).

    Article  Google Scholar 

  7. Yu.P. Raizer, Gas Discharge Physics (Berlin: Springer, 1991), p. 449.

    Book  Google Scholar 

  8. H. Luo, Z. Liang, B. Lv, X. Wang, Z. Guan, and L. Wang, Appl. Phys. Lett. 91, 221504 (2007).

    Article  Google Scholar 

  9. H. Yucel Kurt, E. Kurt, and B.G. Salamov, Cryst. Res. Technol. 39, 743 (2004).

    Article  Google Scholar 

  10. M.S. Mokrov and Yu.P. Raizer, Plasma Sources Sci. Technol. 17, 035031 (2008).

    Article  Google Scholar 

  11. Yu.B. Golubovskii, V.A. Maiorov, P. Li, and M. Lindmayer, J. Phys. D 39, 1574 (2006).

    Article  Google Scholar 

  12. N. Gherardi, E. Croquesel, N. Naude, P. Veis, and F. Massines, Proceedings of the 8th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE VIII) (Puhajarve, Estonia, 2002).

  13. E. Kurt, H. Kurt, and U. Bayhan, Cent. Eur. J. Phys. 7, 123 (2009).

    Google Scholar 

  14. H. Kurt, S. Cetin, and B.G. Salamov, IEEE Trans. Plasma Sci. 39, 1086 (2011).

    Article  Google Scholar 

  15. O. Noblanc, C. Arnodo, C. Dua, E. Chartier, and C. Brylinski, Mater. Sci. Forum 338, 1247 (2000).

    Article  Google Scholar 

  16. V.V. Buniatyan and V.M. Aroutiounian, J. Phys. D (2007). doi:10.1088/0022-3727/40/20/S18.

    Google Scholar 

  17. Yu.A. Astrov, A.N. Lodygin, and L.M. Portsel, Phys. Rev. E 91, 032909 (2015).

    Article  Google Scholar 

  18. L. Schwaederle, M.K. Kulsreshath, L.J. Overzet, P. Lefaucheux, T. Tillocher, and R. Dussart, J. Phys. D 45, 065201 (2012).

    Article  Google Scholar 

  19. M. Klas, S. Matejcik, B. Radjenovic, and M.R. Radjenovic, Phys. Scr. 83, 045503 (2011).

    Article  Google Scholar 

  20. T.G. Rogers, A.A. Neuber, K. Frank, G.R. Laity, and J.C. Dickens, IEEE Trans. Plasma Sci. 38, 2764 (2010).

    Article  Google Scholar 

  21. A.V. Phelps and Z.Lj. Petrovic, Plasma Sources Sci. Technol. 8, R21 (1999).

    Article  Google Scholar 

  22. L.E. Kline and J.G. Siambis, Phys. Rev. A 5, 794 (1972).

    Article  Google Scholar 

  23. M. Kaku, Y. Sato, and S. Kubodera, Appl. Phys. B 107, 85 (2012).

    Article  Google Scholar 

  24. L. Schwaederlé, M.K. Kulsreshath, L.J. Overzet, P. Lefaucheux, T. Tillocher, and R. Dussart, J. Phys. D 45, 065201 (2012).

    Article  Google Scholar 

  25. C.H. Chen, J.A. Yeh, and P.J. Wang, J. Micromech. Microeng. 16, 1366 (2006).

    Article  Google Scholar 

  26. D. Mariotti, J.A. McLaughlin, and P. Maguire, Plasma Sources Sci. Technol. 13, 207 (2004).

    Article  Google Scholar 

  27. H.B. Smith, C. Charles, and R.W. Boswell, Phys. Plasmas 10, 875 (2003).

    Article  Google Scholar 

  28. Z.Lj. Petrovic, N. Skoro, D. Maric, C.M.O. Mahony, P.D. Maguire, M.R. Radenovic, and G. Malovic, J. Phys. D 41, 194002 (2008).

    Article  Google Scholar 

  29. V.I. Gibalov and G.J. Pietsch, Plasma Sources Sci. Technol. 21, 024010 (2012).

    Article  Google Scholar 

  30. M. Krüger, M. Schenk, M. Förster, and P. Hommelhoff, J. Phys. B 45, 074006 (2012).

    Article  Google Scholar 

  31. M.M. Nudnova and A.Yu. Starikovskii, J. Phys. D 41, 234003 (2008).

    Article  Google Scholar 

  32. B.G. Salamov, J. Phys. D 37, 2496 (2004).

    Article  Google Scholar 

  33. G.G. Raju, Gaseous Electronics (Boca Raton: Taylor & Francis, 2006), p. 93.

    Google Scholar 

  34. H.Y. Kurt and E. Kurt, Elektronika ir Elektrotechnika 20, 1392 (2014).

    Article  Google Scholar 

  35. B.G. Salamov, J. Phys. D 37, 2496 (2004).

    Article  Google Scholar 

  36. E. Koc, S. Karaköse, and B.G. Salamov, Phys. Status Solidi A 210, 1806 (2013).

    Google Scholar 

Download references

Acknowledgements

This research was funded by Grants BAP Nos. 05/2012-47 and 05/2012-72 from the Gazi University Scientific Research Project Unit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Hilal Kurt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurt, H.H., Tanrıverdi, E. & Kurt, E. Theoretical and Experimental Exploration of Breakdown Phenomena in an Argon-Filled GaP Device. J. Electron. Mater. 45, 3970–3977 (2016). https://doi.org/10.1007/s11664-016-4539-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4539-9

Keywords

Navigation