Skip to main content
Log in

Hybrid Hamiltonian and Green's Function Approach for Studying Native Point Defect Levels in Semiconductor Compounds and Superlattices

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We have developed a hybrid method that can be applied to study isolated defects in semiconductor compounds and superlattices. The method is a combination of (1) a long-range tight-binding (TB) Hamiltonian, (2) a first-principles Hamiltonian, and (3) a Green’s function (GF) formalism. The calculation of the GF requires accurate energy band structure, wave functions, and defect potentials. The TB Hamiltonian with sp 3 orbitals basis ensures accurate band gaps and band masses while providing the functional form for the wave functions. We calculated the band gaps of InAs/GaSb and InAs/InAsSb strained-layer superlattices and found them to agree well with measurements. The change in potentials caused by native point defects (NPDs) was obtained from a first-principles method using Spanish Initiative for Electronic Simulations with Thousands of Atoms, which also uses sp 3 basis. We describe the method of calculating NPD energy levels in compounds and superlattices, obtain some defect levels in GaAs, InAs, InSb, and GaSb compounds, and provide details of the NPD-level calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.L. Smith and C. Mailhiot, J. Appl. Phys. 62, 2545 (1987).

    Article  Google Scholar 

  2. R.H. Miles, J.N. Schulman, D.H. Chow, and T.C. McGill, Semicond. Sci. Technol. 8, S102 (1993).

    Article  Google Scholar 

  3. R.H. Miles, ONR Rep. 92, 28942 (1992).

    Google Scholar 

  4. C.H. Grein, P.M. Young, and H. Ehrenreich, Appl. Phys. Lett. 61, 2905 (1992).

    Article  Google Scholar 

  5. G. Brown, Proceedings of SPIE 5783 (SPIE, Bellingham, 2005), p. 65.

  6. W. Tennant, The Wonder of Nanotechnology: Quantum Optoelectronic Devices and Applications, ed. M. Razeghi, L. Esaki, and K. von Klitzing (Bellingham: SPIE, 2013),

    Google Scholar 

  7. E. Plis, N. Gautam, S. Myers, S.S. Krishna, E.P. Smith, S. Johnson, and S. Krishna, Proceedings of SPIE, pp. 8012–80120X (2011).

  8. D.Z. Ting, C.J. Hill, A. Soibel, S.A. Keo, M. Mumolo, J. Nguyen, and S.D. Gunapala, Appl. Phys. Lett. 95, 023508 (2009).

    Article  Google Scholar 

  9. J.R. Meyer, C.A. Hoffman, F.L. Bartoli, and L.R. Ram-Mohan, Appl. Phys. Lett. 67, 757 (1995).

    Article  Google Scholar 

  10. E.H. Steenbergen, B.C. Connelly, G.D. Metcalfe, H. Shen, M. Wraback, D. Lubyshev, Y. Qiu, J.M. Fastenau, A.W.K. Liu, S. Elhamri, O.O. Cellek, and Y.-H. Zhang, Appl. Phys. Lett. 99, 251110 (2011).

    Article  Google Scholar 

  11. S.P. Svensson, D. Donetsky, D. Wang, H. Hier, F.J. Crowne, and G. Belenky, J. Cryst. Growth 334, 103 (2011).

    Article  Google Scholar 

  12. J.G. Pellegrino and R. DeWames, Proceedings of SPIE, pp. 7298–72981U (2009).

  13. S.P. Svensson, D. Donetsky, D. Wang, P. Maloney, and G. Belenky, Proceedings of SPIE, pp. 7660–7660 V-1 (2010).

  14. G. Belenky, G. Kipshidze, D. Donetsky, S.P. Svensson, W.L. Sarney, H. Hier, L. Shterengas, D. Wang, and Y. Lin, Proc. SPIE 8012, 80120W (2011).

    Article  Google Scholar 

  15. Y. Chang, C.H. Grein, J. Zhao, C.R. Becker, M.E. Flatte, P.-K. Liao, F. Aqariden, and S. Sivananthan, Appl. Phys. Lett. 93, 192111 (2008).

    Article  Google Scholar 

  16. D. Rhiger, R.E. Kvaas, S.F. Harris, and C.J. Hill, Infrared Phys. Technol. 52, 304 (2009).

    Article  Google Scholar 

  17. L. Colombo, Ann. Rev. Mater. 32, 271 (2002).

    Article  Google Scholar 

  18. Y. Wei and M. Razeghi, Phys. Rev. 69, 085316 (2004).

    Article  Google Scholar 

  19. E.G. Wang and D.S. Wang, J. Phys. 4, 1311 (1992).

    Google Scholar 

  20. M.E. Flatte and C.F. Pryor, Proc. SPIE 7608, 760824 (2010).

    Article  Google Scholar 

  21. V. Virkkala, V. Havu, F. Tuomisto, and M.J. Puska, Phys. Rev. 86, 144101 (2012).

    Article  Google Scholar 

  22. Y.C. Chang, R.B. James, and J.W. Davenport, Phys. Rev. B 73, 035211 (2006).

    Article  Google Scholar 

  23. P.R. Briddon and M.J. Rayson, Phys. Status Solidi (b) 248, 1301 (2011).

    Article  Google Scholar 

  24. M.S. Hybertsen and S.G. Louie, Phys. Rev. B 34, 5390 (1986).

    Article  Google Scholar 

  25. A.D. Becke, J. Chem. Phys. 98, 1372 (1993).

    Article  Google Scholar 

  26. J. Heyd, J.E. Peralta, G.E. Scuseria, and R.L. Martin, J. Chem. Phys. 123, 174101 (2005).

    Article  Google Scholar 

  27. S. Krishnamurthy and M.A. Berding, J. Appl. Phys. 90, 828 (2001).

    Article  Google Scholar 

  28. J.A. Moriarty, Phys. Rev. B 5, 2066 (1972).

    Article  Google Scholar 

  29. S.P. Reifman and B.V. Schulichenko, Phys. Status Solidi (b) 96, 537 (1979).

    Article  Google Scholar 

  30. G.A. Baraff and M. Schulter, Phys. Rev. B. 10, 4965 (1979).

    Article  Google Scholar 

  31. J. Bernholc, N.O. Lipari, and S.T. Pantlides, Phys. Rev. B 21, 3545 (1980).

    Article  Google Scholar 

  32. D. Vanderbilt and J.D. Joannopoulos, Phys. Rev. B 22, 2927 (1980).

    Article  Google Scholar 

  33. D.N. Talwar and C.S. Ting, Phys. Rev. B 25, 2660 (1982).

    Article  Google Scholar 

  34. A.-B. Chen and A. Sher, Semiconductor Alloys (New York: Plenum, 1995).

    Google Scholar 

  35. J.R. Chelikowsky and M.L. Cohen, Phys. Rev. B 14, 556 (1976).

    Article  Google Scholar 

  36. I. Vurgaftman, J.R. Meyer, and L.R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).

    Article  Google Scholar 

  37. F. Szmulowicz, H. Haugan, and G.J. Brown, Phys. Rev. B 69, 155321 (2004).

    Article  Google Scholar 

  38. A.P. Ongstad, R. Kaspi, C.E. Moeller, M.L. Tilton, D.M. Gianardi, J.R. Chavez, and G.C. Dente, J. Appl. Phys. 89, 2185 (2001).

    Article  Google Scholar 

  39. R. Kaspi, C. Moeller, A. Ongstad, M.L. Tilton, D. Gianardi, G. Dente, and P. Gopaladasu, Appl. Phys. Lett. 76, 409 (2000).

    Article  Google Scholar 

  40. E.H. Steenbergen, O.O. Cellek, D. Lubyshev, Y. Quiu, J.M. Fastenau, A.W. Liu, and Y.-H. Zhang, Proceedings of SPIE, pp. 8268–82680 K-1 (2012).

  41. N.J. Ekins-Daukes, K. Kawaguchi, and J. Zhang, Cryst. Growth Des. 2, 287 (2002).

    Article  Google Scholar 

  42. J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejon, and D. Sanchez-Portal, J. Phys 14, 2745 (2002).

    Google Scholar 

  43. J. Lagowski, D.G. Lin, T.-P. Chen, M. Skowronski, and H.C. Gatos, Appl. Phys. Lett. 47, 929 (1985).

    Article  Google Scholar 

Download references

ACKNOWLEDGEMENTS

The authors thank USAF contract (# FA8650-11-D-5800/TO 0008) through UTC subcontract (# 14-S7408-02-C1) for the funding, and Dr. Gail Brown for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srini Krishnamurthy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnamurthy, S., Van Orden, D. & Yu, ZG. Hybrid Hamiltonian and Green's Function Approach for Studying Native Point Defect Levels in Semiconductor Compounds and Superlattices. J. Electron. Mater. 45, 4574–4579 (2016). https://doi.org/10.1007/s11664-016-4494-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4494-5

Keywords

Navigation