Skip to main content
Log in

Electronic Band Structures of the Highly Desirable III–V Semiconductors: TB-mBJ DFT Studies

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The correct band gaps of semiconductors are highly desirable for their effective use in optoelectronic and other photonic devices. However, the experimental and theoretical results of the exact band gaps are quite challenging and sometimes tricky. In this article, we explore the electronic band structures of the highly desirable optical materials, III–V semiconductors. The main reason of the ineffectiveness of the theoretical band gaps of these compounds is their mixed bonding character, where large proportions of electrons reside outside atomic spheres in the intestinal regions, which are challenging for proper theoretical treatment. In this article, the band gaps of the compounds are revisited and successfully reproduced by properly treating the density of electrons using the recently developed non-regular Tran and Blaha’s modified Becke–Johnson (nTB-mBJ) approach. This study additionally suggests that this theoretical scheme could also be useful for the band gap engineering of the III–V semiconductors. Furthermore, the optical properties of these compounds are also calculated and compared with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Amin, I. Ahmad, M. Maqbool, S. Goumri-Said, and R. Ahmad, J. Appl. Phys. 109, 023109 (2011).

    Article  Google Scholar 

  2. H. Xiao, J. Tahir-Kheli, and W.A. Goddard, J. Phys. Chem. Lett. 2, 212 (2011).

    Article  Google Scholar 

  3. F. Tran and P. Blaha, Phys. Rev. Lett. 102, 22640 (2009).

    Google Scholar 

  4. A.D. Becke and E.R. Johnson, J. Chem. Phys. 124, 221101 (2006).

    Article  Google Scholar 

  5. P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964).

  6. W. Kohan and L.J. Sham, Phys. Rev. A 140, 1133 (1965).

    Article  Google Scholar 

  7. D. Koller, F. Tran, and P. Blaha, Phys. Rev. B. 83, 195134 (2011).

  8. D. Koller, F. Tran, and P. Blaha, Phys. Rev. B. 85, 155109 (2012).

    Article  Google Scholar 

  9. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  10. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2 K: An Augmented Plane Wave and Local Orbitals Program for Calculating Crystal Properties, ed. K. Schwarz (Austria: Vienna University of Technology, 2001).

  11. R. Gillen, S.J. Clark, and J. Robertson, Phys. Rev. B. 87, 125116 (2013).

    Article  Google Scholar 

  12. D.M. Bylander and L. Kleinman, Phys. Rev. B. 41, 7868 (1990).

    Article  Google Scholar 

  13. O. Madelung, ed., Semiconductors: Data Handbook (Berlin: Springer, 2004).

  14. P. Carrier and S.H. Wei, J. Appl. Phys. 97, 033707 (2005).

    Article  Google Scholar 

  15. T. Kotani and M.V. Schilfgaarde, Solid State Comm. 121, 461 (2002).

    Article  Google Scholar 

  16. M. Shishkin, M. Marsman, and G. Kresse, Phys. Rev. Lett. 99, 246403 (2007).

    Article  Google Scholar 

  17. F. Bechstedt, F. Fuchs, and G. Kresse, Phys. Status Solidi. B 246, 1877 (2009).

  18. C.B. Geller, W. Wolf, S. Picozzi, A. Continenza, R. Asahi, W. Mannstadt, A.J. Freeman, and E. Wimmer, J. Appl. Phys. Lett. 79, 368 (2001).

  19. I.N. Remediakis and E. Kaxiras, Phys. Rev. B. 59, 5536 (1998).

    Article  Google Scholar 

  20. A. Zaoui and F. El Hassan, J. Phys.: Condens. Matter 13, 253 (2001).

    Google Scholar 

  21. J.A. Camargo and R. Baquero, Superficies Y Vacio. 26, 54 (2013).

    Google Scholar 

  22. M. Yousaf, M.A. Saeed, R. Ahmed, M.M. Alsardia, A.R. Mat Isa, and A. Shaari, Commun. Theor. Phys. 58, 777 (2012).

  23. J.L. Melissa, M.H. Thomas, M. Henderson, and E.S. Gustavo, J. Phys. Condens. Matter 24, 145504 (2012).

  24. J.P. Perdew, R.G. Parr, M. Levy, and J.L. Balduz, Phys. Rev. Lett. 49, 1691 (1982).

    Article  Google Scholar 

  25. A. Rubio, J.L. Corkill, M.L. Cohen, E.L. Shirley, and S.G. Louie, Phys. Rev. B 48, 11810 (1993).

    Article  Google Scholar 

  26. B. Amin, S. Arif, I. Ahmad, M. Maqbool, R. Ahmad, S. Goumri-Said, and K. Prisbrey, J. Electron. Mater. 40, 1428 (2011).

    Article  Google Scholar 

  27. R. Ahmed, Fazal-e-Aleem, S.J. Hashemifar, H. Rashid, and H. Akbarzadeh. Commun. Theor. Phys. (Beijing, China) 52, 527 (2009).

  28. J. Heyd, J.E. Perlta, and G.E. Scuseria, J. Chem. Phys. 123, 174101 (2005).

    Article  Google Scholar 

  29. F. El Haj Hassan, A. Breidi, S. Ghemid, B. Amrani, H. Meradji, and O. Pages, J. Alloys Compd. 499, 80 (2010).

  30. B. Amin, I. Ahmad, and M. Maqbool, J. Lightwave Technol. 28, 223 (2010).

    Article  Google Scholar 

  31. M. Maqbool, B. Amin, and I. Ahmad, J. Opt. Soc. Am. B 26, 2181 (2009).

    Article  Google Scholar 

  32. S. Hussain, S. Dalui, R.K. Roy, and A.K. Pal, J. Phys. D Appl. Phys. 39, 2053 (2006).

    Article  Google Scholar 

  33. H. Salehi, H.A. Bandehian, and M. Farbod, Mater. Sci. Semicond. Process. 26, 477 (2014).

    Article  Google Scholar 

  34. M. Yousaf, M.A. Saeed, R. Ahmed, M.M. Alsardia, A.R.M. Isa, and A. Shaari, Commun. Theor. Phys. 58, 777 (2012).

    Article  Google Scholar 

  35. H. Jiang, J. Chem. Phys. 138, 134115 (2013).

    Article  Google Scholar 

  36. J.A. Camargo-Martinez and R. Baquero, Phys. Rev. B. 86, 195106 (2012).

    Article  Google Scholar 

  37. M. Yazdanmehr, S. Jalali Asadabadi, A. Nourmohammadi, M. Ghasemzadeh, and M. Rezvanian, Nanoscale Res. Lett. 7, 488 (2012).

  38. E. Gordanian, S. Jalali Asadabadi, I. Ahmad, S. Rahimi, and M. Yazdani-Kacoei, RSC Adv. 5, 23320 (2015).

  39. H. Papi, S. Jalali Asadabadi, A. Nourmohammadi, I. Ahmad, J. Nematollahi, and M. Yazdanmehr, RSC Adv. 5, 55088 (2015).

  40. S. Jalali-Asadabadi, E. Ghasemikhah, T. Ouahrani, B. Nourozi, M. Bayat-Bayatani, S. Javanbakht, H.A. Rahnamaye Aliabad, I. Ahmad, J. Nematollahi, and M. Yazdani-Kachoei, J. Electron. Mater. 45, 339 (2016).

  41. D. Waroquiers, A. Lherbier, A. Miglio, M. Stankovske, S. Ponce, M.J.T. Oliveira, M. Giantomassi, G.-M. Rignanese, and X. Gonze, Phys. Rev. B 075121 (2013).

  42. D.E. Aspne and A.A. Studna, Phys. Rev. B 27, 985 (1983).

    Article  Google Scholar 

  43. D. Penn, Phys. Rev. 128, 2093 (1962).

    Article  Google Scholar 

  44. A.H. Reshak, J. Chem. Phys. 125, 034710 (2006).

    Article  Google Scholar 

  45. A.H. Reshak, Eur. Phys. J. B 47, 503 (2005).

    Article  Google Scholar 

Download references

Acknowledgement

We acknowledge the financial support from the Higher Education Commission of Pakistan (HEC), Project No. 20-3959/NRPU/R&D/HEC2014/119.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iftikhar Ahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rehman, G., Shafiq, M., Saifullah et al. Electronic Band Structures of the Highly Desirable III–V Semiconductors: TB-mBJ DFT Studies. J. Electron. Mater. 45, 3314–3323 (2016). https://doi.org/10.1007/s11664-016-4492-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4492-7

Keywords

Navigation